摘要:
|
基于石浦海洋站实测数据,采用周期性自回归积分滑动平均方法(SARIMA)构建了逐时海表温度短期预报模型,根据观测数据的周期特征和模型预报误差比选确定了模型参数。结果表明:与采用逐时观测数据作为输入的模型相比,采用逐0.5 h内插数据构建的SARIMA模型的预报结果与实测数据间的相位更为一致,预报误差更小,但进一步将输入数据的时间分辨率提高,72 h逐时预报精度提升不明显;研究还发现模型预报误差总体随输入数据时长的减小而增大;采用366 d逐0.5 h数据构建的SARIMA (2,0,2)(2,1,0)25模型的预报结果较优,0~24 h、24~48 h、48~72 h预报的平均绝对误差分别为0.176℃、0.350℃、0.520℃,相应的均方根误差分别为0.217℃、0.396℃、0.567℃。 |
Based on the Sea Surface Temperature (SST) data of Shipu Station, time-series model of Seasonal AutoRegressive Integrated Moving Average (SARIMA) was used to construct a short-term forecasting model for hourly SST. Model parameters were determined according to the periodic of the data and the model forecasting errors. Compared to the model with original hourly input data, the model with interpolated half-hourly input data shows better performance, and the phases of the forecasts have a better consistent with the observations. Using higher temporal resolution of the input data shows no obvious improvement of the accuracy of the 72 h hourly SST forecasts. The results also show that the forecasting error increases with the reduction of the training data length. SARIMA(2, 0, 2) (2, 1, 0)25 model with 366-day interpolated half-hourly SST data shows the best forecasting accuracy. The mean absolute errors of 0~24 h, 24~48 h and 48~72 h forecasts are 0.176 ℃, 0.350 ℃ and 0.520 ℃, the corresponding root mean square error are 0.217 ℃, 0.396 ℃ and 0.567 ℃, respectively. |
参考文献:
|
[1] 张建华. 海温预报知识讲座: 第一讲海水温度预报概况[J]. 海洋预报, 2003, 20(4): 81-85. ZHANG J H. Lecture on sea water temperature prediction: lecture 1 overview of sea water temperature prediction[J]. Marine Forecasts, 2003, 20(4): 81-85. [2] 匡晓迪, 王兆毅, 张苗茵, 等. 基于BP神经网络方法的近岸数值海温预报释用技术[J]. 海洋与湖沼, 2016, 47(6): 1107-1115. KUANG X D, WANG Z Y, ZHANG M Y, et al. An interpretation scheme of numerical near-shore sea-water temperature forecast based on BPNN[J]. Oceanologia et Limnologia Sinica, 2016, 47(6): 1107-1115. [3] 韩玉康, 余丹丹, 申晓莹, 等. HYCOM模式SST的预报误差订正[J]. 海洋预报, 2018, 35(3): 76-80. HAN Y K, YU D D, SHEN X Y, et al. Study on the correction of SST prediction of HYCOM[J]. Marine Forecasts, 2018, 35(3): 76-80. [4] 张建华. 海温预报知识讲座: 第二讲数理统计方法在海温预报中的应用[J]. 海洋预报, 2004, 21(1): 85-90. ZHANG J H. Lecture on sea water temperature prediction: lecture 2 application of mathematical statistical methods on sea water temperature prediction[J]. Marine Forecasts, 2004, 21(1): 85-90. [5] BOX G E P, JENKINS G M, REINSEL G C. Time series analysis: forecasting and control[M]. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994. [6] LIU X L, LIN Z, FENG Z M. Short-term offshore wind speed forecast by seasonal ARIMA—A comparison against GRU and LSTM[J]. Energy, 2021, 227: 120492. [7] 俞肇元, 袁林旺, 谢志仁, 等. 基于SSA和AR模型的海面变化预测试验[J]. 海洋湖沼通报, 2007(4): 14-20. YU Z Y, YUAN L W, XIE Z R, et al. Prediction experiment of sealevel change based on the SSA and AR model[J]. Transactions of Oceanology and Limnology, 2007(4): 14-20. [8] HALMOVA D, PEKAROVA P, PEKAR J, et al. The simulation of the water temperature rising using ARIMA models[J]. WSEAS Transactions on Heat and Mass Transfer, 2016, 11: 46-55. [9] 张莹, 谭艳春, 彭发定, 等. 基于EEMD和ARIMA的海温预测模型研究[J]. 海洋学研究, 2019, 37(1): 9-14. ZHANG Y, TAN Y C, PENG F D, et al. Study on time series prediction model of sea surface temperature based on Ensemble Empirical Mode Decomposition and Autoregressive Integrated Moving Average[J]. Journal of Marine Sciences, 2019, 37(1): 9-14. [10] 徐丽丽, 余骏, 高鑫鑫, 等. 一种基于时间序列分析的赤潮预测新方法研究——以浙江海域为例[J]. 海洋预报, 2020, 37(5): 95-103. XU L L, YU J, GAO X X, et al. Study on the red tide prediction based on time series analysis—A case study in Zhejiang sea area [J]. Marine Forecasts, 2020, 37(5): 95-103. [11] 张振全, 李醒飞, 杨少波. 基于AR-SVR模型的有效波高短期预测[J]. 太阳能学报, 2021, 42(7): 15-20. ZHANG Z Q, LI X F, YANG S B. Short-term prediction of significant wave height based on AR-SVR model[J]. Acta Energiae Solaris Sinica, 2021, 42(7): 15-20. [12] 刘娇, 史国友, 朱凯歌, 等. 基于调和分析和ARIMA-SVR的组合潮汐预测模型[J]. 上海海事大学学报, 2019, 40(3): 93-99. LIU J, SHI G Y, ZHU K G, et al. A combined tide prediction model based on harmonic analysis and ARIMA-SVR[J]. Journal of Shanghai Maritime University, 2019, 40(3): 93-99. [13] ARUNKUMAR K E, KALAGA D V, SAI KUMAR C M, et al. Forecasting the dynamics of cumulative COVID-19 cases (confirmed, recovered and deaths) for top-16 countries using statistical machine learning models: auto-Regressive Integrated Moving Average (ARIMA) and Seasonal Auto-Regressive Integrated Moving Average (SARIMA) [J]. Applied Soft Computing, 2021, 103: 107161. [14] 耿宏, 王伟, 邢承滨. 基于ARMA模型的潮位拟合及内插研究[J]. 海洋测绘, 2021, 41(5): 17-20. GENG H, WANG W, XING C B. Research on tide fitting and interpolation based on ARMA model[J]. Hydrographic Surveying and Charting, 2021, 41(5): 17-20. [15] DICKEY D A, FULLER W A. Likelihood ratio statistics for autoregressive time series with a unit root[J]. Econometrica, 1981, 49(4): 1057-1072. [16] 白彬人, 宋家喜. 中国近海沿岸海温多时间尺度变率及影响其变化的天气气候因素[J]. 海洋预报, 2005, 22(4): 78-88. BAI B R, SONG J X. Multi-temporal sea temperature variability in the coastal areas of China and their affecting atmospheric and climatic factors[J]. Marine Forecasts, 2005, 22(4): 78-88. [17] 国家市场监督管理总局, 国家标准化管理委员会. GB/T 41165-2021海洋预报结果准确性检验评估方法[S]. 北京: 中国标准出版社, 2021. State Administration for Market Regulation, Standardization Administration. GB/T 41165-2021 Accuracy evaluation methods of marine forecast results[S]. Beijing: Standards Press of China, 2021. [18] 李燕, 张建华, 刘钦政, 等. 单站海温短期预报自动化[J]. 海洋预报, 2007, 24(4): 33-41. LI Y, ZHANG J H, LIU Q Z, et al. The automation of single sea station's surface sea temperature short term forecasting[J]. Marine Forecasts, 2007, 24(4): 33-41. [19] 林小刚, 王兆毅, 李竞时, 等. 基于LSTM神经网络方法的粤东近岸海温预报[J]. 海洋预报, 2022, 39(5): 27-36. LIN X G, WANG Z Y, LI J S, et al. Sea temperature forecasting based on LSTM neural network along the coast of eastern Guangdong[J]. Marine Forecasts, 2022, 39(5): 27-36. [20] 王兆毅, 李云, 王旭. 中国近岸海域基础预报单元海温预报指导产品研制[J]. 海洋预报, 2020, 37(4): 59-65. WANG Z Y, LI Y, WANG X. Development of forecast guidance product for sea temperature of basic forecast units in the Chinese coastal waters[J]. Marine Forecasts, 2020, 37(4): 59-65. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|