摘要:
|
针对目前利用实测数据对长江口邻近海域水质状况进行分析研究相对偏少的情况,基于“淞航”号2018年春季航次对该海域的综合观测,利用实验室水样分析数据对船载温盐深仪(CTD)的测量数据进行校正,并对该区域2018年春季时节悬浮物(TSM)和叶绿素a (Chl-a)浓度的空间插值结果进行分析。研究结果表明: CTD观测数据与水样分析数据呈较强线性相关关系。反距离权重插值对TSM和Chl-a浓度空间分布具有整体最优的效果。TSM浓度在近岸和近海底较高,在观测区域内出现两个高值中心; Chl-a浓度在近岸海域较高,有较明显的片状高值结构,垂向上表层较高。TSM与Chl-a浓度分布在长江口南北表现出不同的特征,且两者具有一定的负相关性。长江径流、外海洋流、潮汐混合等水动力过程是影响该区域TSM和Chl-a浓度分布的主要因素。 |
Considering the relatively few studies utilizing in-situ data on this topic, this study uses the comprehensive observational data collected by the Songhang voyage in spring 2018, to analyze the spatial distribution of total suspended matter (TSM) and chlorophyll a concentrations after correcting shipboard CTD measurements against the laboratory water sample analysis data. The results show that there is a strong linear correlation between CTD measurements and water sample analysis data. The inverse distance weight interpolation has the overall optimal effect on the spatial distribution of TSM concentration and chlorophyll a concentration. The TSM concentration is higher in the nearshore areas and in the bottom water near the seabed, and there are two high-value centers in the observation area; the chlorophyll a concentration is higher in the nearshore areas with obvious flake high-value structure, and higher in the vertical upper surface layer. The distributions of TSM concentration and chlorophyll a concentration in the north and south of the Yangtze River Estuary show different characteristics and negative correlation. The hydrodynamic processes including the runoff of the Yangtze River, ocean currents, and tidal mixing are the main factors affecting the distribution characteristics of TSM concentration and chlorophyll a concentration in the area. |
参考文献:
|
[1] 周伟华, 袁翔城, 霍文毅, 等. 长江口邻域叶绿素a和初级生产力的分布[J]. 海洋学报, 2004, 26(3): 143-150. ZHOU W H, YUAN X C, HUO W Y, et al. Distribution of chlorophyll a and primary productivity in the adjacent sea area of Changjiang River Estuary[J]. Acta Oceanologica Sinica, 2004, 26(3): 143-150. [2] WOHL C, BROWN I, KITIDIS V, et al. Underway seawater and atmospheric measurements of volatile organic compounds in the Southern Ocean[J]. Biogeosciences, 2020, 17(9): 2593-2619. [3] 黄李冰, 李义天, 孙昭华, 等. 长江河口口外海滨区域悬沙浓度分布特征研究[J]. 水力发电学报, 2014, 33(6): 155-161. HUANG L B, LI Y T, SUN Z H, et al. Characteristics of suspended sediment concentration in the offshore area of Yangtze Estuary[J]. Journal of Hydroelectric Engineering, 2014, 33(6): 155-161. [4] HE Y R, WANG Y H, WU H. Regulation of algal bloom hotspots under Mega Estuarine constructions in the Changjiang River Estuary[J]. Frontiers in Marine Science, 2022, 8: 791956. [5] 邵和宾, 范德江, 张晶, 等. 三峡大坝启用后长江口及邻近海域秋季悬浮体、 叶绿素分布特征及影响因素[J]. 中国海洋大学学报,2012, 42(5): 94-104. SHAO H B, FAN D J, ZHANG J, et al. Distribution and influencing factors of suspended matters and chlorophyll in autumn in Yangtze River Estuary post-Three Gorges Dam[J]. Periodical of Ocean University of China, 2012, 42(5): 94-104. [6] GE J Z, TORRES R, CHEN C S, et al. Influence of suspended sediment front on nutrients and phytoplankton dynamics off the Changjiang Estuary: a FVCOM-ERSEM coupled model experiment [J]. Journal of Marine Systems, 2020, 204: 103292. [7] CAFFREY J M, CLOERN J E, GRENZ C. Changes in production and respiration during a spring phytoplankton bloom in San Francisco Bay, California, USA: implications for net ecosystem metabolism[J]. Marine Ecology Progress Series, 1998, 172: 1-12. [8] GAO X L, SONG J M. Phytoplankton distributions and their relationship with the environment in the Changjiang Estuary, China [J]. Marine Pollution Bulletin, 2005, 50(3): 327-335. [9] WANG Y H, WU H, LIN J, et al. Phytoplankton blooms off a high turbidity estuary: a case study in the Changjiang River Estuary[J]. Journal of Geophysical Research: Oceans, 2019, 124(11): 8036-8059. [10] 宋庆磊, 杜德文, 丁明, 等. 协同克里格方法在东海表面温度场数据插值中的应用[J]. 海岸工程, 2011, 30(3): 49-55. SONG Q L, DU D W, DING M, et al. Application of Co-Kriging method to interpolation of surface temperature data in East China Sea[J]. Coastal Engineering, 2011, 30(3): 49-55. [11] 李海涛, 邵泽东. 空间插值分析算法综述[J]. 计算机系统应用,2019, 28(7): 1-8. LI H T, SHAO Z D. Review of spatial interpolation analysis algorithm[J]. Computer Systems & Applications, 2019, 28(7): 1-8. [12] 唐江浪, 李刚. 基于MapGIS的海洋地学空间数据插值方法探析[J]. 现代信息科技, 2019, 3(19): 20-23. TANG J L, LI G. Analysis of spatial data interpolation methods of ocean geosciences based on MapGIS[J]. Modern Information Technology, 2019, 3(19): 20-23. [13] 陈慧文, 陈锦辉, 吴建辉, 等. 基于空间插值法的长江口海水质量评价[J]. 安徽农学通报, 2020, 26(6): 77-82. CHEN H W, CHEN J H, WU J H, et al. Evaluation of seawater quality in the Yangtze River Estuary based on spatial interpolation [J]. Anhui Agricultural Science Bulletin, 2020, 26(6): 77-82. [14] FANG S, VERHOEF W, ZHOU Y X, et al. Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) Estuary using MERIS data[J]. Estuaries and Coasts, 2010, 33(6): 1420-1429. [15] 左书华, 李九发, 万新宁, 等. 长江河口悬沙浓度变化特征分析[J]. 泥沙研究, 2006(3): 68-75. ZUO S H, LI J F, WAN X N, et al. Characteristics of temporal and spatial variation of suspended sediment concentration in the Changjiang Estuary[J]. Journal of Sediment Research, 2006(3): 68-75. [16] 邵和宾, 范德江, 麦晓磊, 等. 长江口典型断面悬浮体颗粒类型与粒级构成及其影响因素[J]. 海洋地质与第四纪地质, 2013, 33(3): 47-56. SHAO H B, FAN D J, MAI X L, et al. Types and size of suspended particles in a typical cross section at the Changjiang Estuary and influence factors[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 47-56. [17] FIRDAUS M R, FITRIYA N, WIJAYANTI L A S, et al. The vertical profile of chlorophyll-a in the waters of submarine volcano of Kawio Barat, Indonesia[J]. IOP Conference Series: Earth and Environmental Science, 2021, 789: 012004. [18] 沈永明, 郑永红, 吴修广. 近岸海域污染物迁移转化的三维水质动力学模型[J]. 自然科学进展, 2004, 14(6): 694-699. SHEN Y M, ZHENG Y H, WU X G, et al. A three-dimensional water quality dynamics model of pollutant migration and transformation in nearshore seas[J]. Progress in Natural Science, 2004, 14(6): 694-699. [19] 刘述锡, 林风翱. 河北海域荧光法测定叶绿素含量周年季节分层分布[J]. 海洋环境科学, 2009, 28(6): 710-714. LIU S X, LIN F A. The layered distribution of chlorophylla detected by fluorescent method in different seasons in Hebei offshore[J]. Marine Environmental Science, 2009, 28(6): 710-714. [20] 杨少磊, 谢玲玲, 杨庆轩. SBE911plus CTD剖面仪的现场校正与数据处理[J]. 海洋技术, 2008, 27(3): 23-26. YANG S L, XIE L L, YANG Q X. Field calibration and data-processing of SBE911plus CTD profiler[J]. Journal of Ocean Technology, 2008, 27(3): 23-26. [21] 周艳霞, 笪良龙, 韩梅, 等. 基于ArcGIS的海水温度空间插值方法研究[C]//张叔英. 中国声学学会水声学分会2013年全国水声学学术会议论文集.《声学技术》 编辑部,上海, 2013: 214-216. ZHOU Y X, DA L L, HAN M, et al. The research of the method of seawater temperature interpolation based on ArcGIS[J]//ZHANG S Y. 2013 National Conference on Hydroacoustics of Hydroacoustics Branch of Chinese Society of Acoustics. Editorial Department of Acoustic Technology, 2013: 214-216. [22] 陈黄蓉, 张靖玮, 王胜强, 等. 长江口及邻近海域的浊度日变化遥感研究[J]. 光学学报, 2020, 40(5): 0501003. CHEN H R, ZHANG J W, WANG S Q, et al. Study on diurnal variation of turbidity in the Yangtze Estuary and adjacent areas by Remote Sensing[J]. Acta Optica Sinica, 2020, 40(5): 0501003. [23] 陈沈良, 张国安, 杨世伦, 等. 长江口水域悬沙浓度时空变化与泥沙再悬浮[J]. 地理学报, 2004, 59(2): 260-266. CHEN S L, ZHANG G A, YANG S L, et al. Temporal and spatial changes of suspended sediment concentration and resuspension in the Yangtze River Estuary and its adjacent waters[J]. Acta Geographica Sinica, 2004, 59(2): 260-266. [24] 杨作升, 郭志刚, 王兆祥, 等. 黄东海陆架悬浮体向其东部深海区输送的宏观格局[J]. 海洋学报, 1992, 14(2): 81-90. YANG Z S, GUO Z G, WANG Z X, et al. Macro pattern of transport of suspended debris from the Huangdong Sea shelf to its eastern deep sea area[J]. Acta Oceanologica Sinica, 1992, 14(2): 81-90. [25] 孙效功, 方明, 黄伟. 黄、 东海陆架区悬浮体输运的时空变化规律[J]. 海洋与湖沼, 2000, 31(6): 581-587. SUN X G, FANG M, HAUNG W. Spatial and temporal variations in suspended particulate matter transport on the Yellow and East China Sea shelf[J]. Oceanologia et Limnologia Sinica, 2000, 31(6): 581-587. [26] O'REILLY J E, BUSCH D A. Phytoplankton primary production on the northwestern Atlantic shelf[J]. Rapport et Proces-Vervbaux Des Reunions, 1984, 183: 255-268. [27] 吴琼. 长江入海径流对长江口浮游植物影响的模拟研究[D]. 南京: 南京信息工程大学, 2021. WU Q. Simulation of the effect of runoff from the Yangtze River on phytoplankton in the Yangtze Estuary[D]. Nanjing: Nanjing University of Information Science & Technology, 2021. [28] 赵丹丹. 中尺度涡及海洋动力要素对叶绿素分布的影响[D]. 青岛: 中国科学院大学(中国科学院海洋研究所), 2021. ZHAO D D. The influence of mesoscale eddies and oceanic dynamic factors on the distribution of chlorophyll[D]. Qingdao: University of Chinese Academy of Sciences (Institute of Oceanology Chinese Academy of Sciences), 2021. [29] 袁涌铨. 人类活动与自然驱动不同背景下的典型海域营养盐分布与关键过程研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2016. YUAN Y Q. Distribution and key processes of nutrients in the typical waters with anthropogenic activities and natural influences [D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2016. [30] DING Y Z, FU D Y, WEI Z H, et al. The spatial distribution of chlorophyll-a in Changjiang River Estuary and adjacent sea in spring[C]//Proceedings of SPIE 7150, Remote Sensing of Inland, Coastal, and Oceanic Waters. Noumea: SPIE, 2008: 715015. [31] XU L J, YANG D Z, YU R C, et al. Nonlocal population sources triggering dinoflagellate blooms in the Changjiang Estuary and adjacent seas: a modeling study[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(11): e2021JG006424. [32] 胡松, 李敏华, 刘必林, 等. 黑潮延伸体区域叶绿素季节变化以及中尺度涡对其影响机制研究[J]. 海洋与湖沼, 2020, 51(6): 1370-1378. HU S, LI M H, LIU B L, et al. Seasonal characteristics of chlorophyll a concentration in Kuroshio extension and influences of Mesoscale eddies[J]. Oceanologia et Limnologia Sinica, 2020, 51(6): 1370-1378. [33] 俞秀霞, 孙琳, 陈长平. 厦门港叶绿素的时空分布及其与水环境因子关系的多元分析[J]. 海洋科学, 2021, 45(6): 49-62. YU X X, SUN L, CHEN C P. Chlorophyll content in Xiamen Bay —spatiotemporal distri-bution and relationship with water environmental factors[J]. Marine Sciences, 2021, 45(6): 49-62. [34] 王勇智, 江文胜. 渤、 黄、 东海悬浮物质量浓度冬、 夏季变化的数值模拟[J]. 海洋科学进展, 2007, 25(1): 28-33. WANG Y Z, JIANG W S. Numerical simulation of variations in Winter and Summer suspended material concentrations in the Bohai Sea, Yellow Sea and East China Sea[J]. Advances in Marine Science, 2007, 25(1): 28-33. [35] 梁洲, 潘扬航, 祝嗣腾, 等. 长江口邻近海域总悬浮颗粒物的时空分布及其影响因素[J]. 厦门大学学报(自然科学版), 2020, 59(S1): 50-55. LIANG Z, PAN Y H, ZHU S T, et al. Spatiotemporal distribution and influencing factors of total suspended particles in the Yangtze River Estuary adjacent sea area[J]. Journal of Xiamen University (Natural Science), 2020, 59(S1): 50-55. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|