首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
基于CNN-LSTM的珠江河口台风过程实时滚动修正预报
作者:邓志弘1  刘丙军1 2  张卡1  胡仕焜1  曾慧3  张明珠3  李丹3 
单位:1. 中山大学 土木工程学院, 广东 珠海 519085;
2. 中山大学水资源与环境研究中心, 广东 广州 510275;
3. 广州市水务科学研究所, 广东 广州 510220
关键词:实时滚动预报 台风 珠江河口 深度学习 误差校正 
分类号:P457.8
出版年·卷·期(页码):2024·41·第一期(94-103)
摘要:
为改善台风预报精度,基于实时滚动修正预报思路,利用卷积神经网络嵌套长短期记忆神经网络(CNN-LSTM)和误差校正(EC)技术,搭建了珠江河口台风实时预报模型。研究结果表明:“滚动预报”比单次预报有更好的路径和强度预报效果,随着模型滚动时间的延长,预报整体精度有逐渐改善的趋势。路径预报结果的均方根误差比单次预报减小了25.67%,强度预报结果的平均绝对误差比单次预报减小了65.04%;考虑误差校正的CNN-LSTM-EC的路径、强度“滚动预报”效果均优于CNN-LSTM,前者的路径预报误差较后者减小了22.57%,强度预报误差减小2.5%。
In order to improve the accuracy of typhoon forecasting, this paper introduces a real-time rolling corrected typhoon forecasting model in the Pearl River Estuary utilizing Convolutional Neural Network Long Short-Term Memory (CNN-LSTM) neural network and Error Correction (EC) method. The results show that the rolling forecasts have better performances on typhoon's track and intensity than the single-time forecasts. The overall accuracy of the rolling forecasts increases gradually along with the prolong of the rolling time of the model. In comparison with the single-time forecasts, the root mean squared error of typhoon's track rolling forecasts decreases by 25.67% and the mean absolute error of typhoon's intensity rolling forecasts decreases by 65.04%. The real-time rolling corrected forecasts of typhoon's track and intensity based on CNN-LSTM-EC are better than those based on CNN-LSTM. Compared with the latter, the forecasting error of the former decreases by 22.57% on the typhoon's track and by 2.5% on the typhoon's intensity.
参考文献:
[1] EMANUEL K. Increasing destructiveness of tropical cyclones over the past 30 years[J]. Nature, 2005, 436(7051): 686-688.
[2] HOYOS C D, AGUDELO P A, WEBSTER P J, et al. Deconvolution of the factors contributing to the increase in global hurricane intensity[J]. Science, 2006, 312(5770): 94-97.
[3] WEBSTER P J, HOLLAND G J, CURRY J A, et al. Changes in tropical cyclone number, duration, and intensity in a warming environment[J]. Science, 2005, 309(5742): 1844-1846.
[4] 王洁, 杨奕杰, 王杰, 等. 基于近20a历史数据的中国沿海城市台风灾害风险评估[J]. 海洋预报, 2021, 38(5): 24-30. WANG J, YANG Y J, WANG J, et al. Typhoon disaster risk assessment of coastal cities in China based on historical data over the past 20 years[J]. Marine Forecasts, 2021, 38(5): 24-30.
[5] 陈煜, 杨剑, 段忠东, 等. 粤港澳大湾区台风危险性分析[J]. 自然灾害学报, 2022, 31(2): 26-38. CHEN Y, YANG J, DUAN Z D, et al. Typhoon hazard analysis of the Guangdong-Hong Kong-Macao Greater Bay Area[J]. Journal of Natural Disasters, 2022, 31(2): 26-38.
[6] CHEN R, ZHANG W M, WANG X. Machine learning in tropical cyclone forecast modeling: a review[J]. Atmosphere, 2020, 11(7): 676.
[7] 曹祥村, 邵利民. 一种利用BP网络预报台风路径的新方法[J]. 海洋预报, 2007, 24(3): 75-82. CAO X C, SHAO L M. A new method of forecasting typhoon paths using BP Network[J]. Marine Forecasts, 2007, 24(3): 75-82.
[8] ALI M M, KISHTAWAL C M, JAIN S. Predicting cyclone tracks in the north Indian Ocean: an artificial neural network approach[J]. Geophysical Research Letters, 2007, 34(4): L04603.
[9] ALEMANY S, BELTRAN J, PEREZ A, et al. Predicting hurricane trajectories using a recurrent neural network[C]//Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence. Honolulu: AAAI, 2019: 58.
[10] KORDMAHALLEH M M, SEFIDMAZGI M G, HOMA-IFAR A. A sparse recurrent neural network for trajectory prediction of Atlantic hurricanes[C]//Proceedings of Genetic and Evolutionary Computation Conference 2016. Denver: ACM, 2016: 957-964.
[11] PAN B, XU X, SHI Z W. Tropical cyclone intensity prediction based on recurrent neural networks[J]. Electronics Letters, 2019, 55(7): 413-415.
[12] GUO R, QI L B, GE Q Q, et al. A study on the ensemble forecast real-time correction method[J]. Journal of Tropical Meteorology, 2018, 24(1): 42-48.
[13] LIN I I, CHEN C H, PUN I F, et al. Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008)[J]. Geophysical Research Letters, 2009, 36(3): L03817.
[14] SANDERY P A, BRASSINGTON G B, CRAIG A, et al. Impacts of ocean-atmosphere coupling on tropical cyclone intensity change and ocean prediction in the Australian region[J]. Monthly Weather Review, 2010, 138(6): 2074-2091.
[15] LIU Y, WANG H, LEI X H, et al. Real-time forecasting of river water level in urban based on radar rainfall: A case study in Fuzhou City[J]. Journal of Hydrology, 2021, 603: 126820.
[16] LIU Y, WANG H, FENG W W, et al. Short term real-time rolling forecast of urban river water levels based on LSTM: a case study in Fuzhou city, China[J]. International Journal of Environmental Research and Public Health, 2021, 18(17): 9287.
[17] YANG R Y, MU J L, WANG S D, et al. Hourly rolling correction of precipitation forecast via convolutional and long short-term memory networks[J]. Atmospheric Science Letters, 2022, 23(10):e1100.
[18] ALASALI F, TAWALBEH R, GHANEM Z, et al. A sustainable early warning system using rolling forecasts based on ANN and golden ratio optimization methods to accurately predict real-time water levels and flash flood[J]. Sensors, 2021, 21(13): 4598.
[19] 刘天绍, 刘孙俊, 杨玺, 等. 1951—2015影响广东沿海台风的统计分析[J]. 海洋预报, 2018, 35(4): 68-74. LIU T S, LIU S J, YANG X, et al. Statistical analysis of the typhoon influencing Guangdong province during 1951-2015[J]. Marine Forecasts, 2018, 35(4): 68-74.
[20] 叶荣辉, 戈军, 张文明, 等. 影响粤港澳大湾区的热带气旋统计分析[J]. 水利水电技术, 2020, 51(S1): 37-43. YE R H, GE J, ZHANG W M, et al. Statistical analysis on impact from tropical cyclone on Guangdong-HongKong-Macao Greater Bay Area[J]. Water Resources and Hydropower Engineering, 2020, 51(S1): 37-43.
[21] LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551.
[22] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[23] HOCHREITER S, SCHMIDHUBER J. Long short-term memory [J]. Neural Computation, 1997, 9(8): 1735-1780.
[24] 周梦, 陈华, 郭富强, 等. 洪水预报实时校正技术比较及应用研究[J]. 中国农村水利水电, 2018(7): 90-95. ZHOU M, CHEN H, GUO F Q, et al. The application of real-time correction techniques for flood forecasting[J]. China Rural Water and Hydropower, 2018(7): 90-95.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号 电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn
本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626