摘要:
|
基于WRF气象模式,利用不同时间频次的海温强迫场对2019年超强台风“利奇马”个例开展模拟研究。结果表明:不同时间频次海温强迫对台风“利奇马”路径模拟的影响较小,而对台风强度和结构的模拟有较大影响。高频海温强迫场相较于日平均海温场保留了海温与台风相互作用之前的信号,使其在台风路径上的暖涡更暖,导致模拟的台风强度更强,特别是在快速增强阶段与中国气象局台风最佳路径数据更为接近。通过对台风过程中的热力和动力过程分析发现,高频海温强迫场会使更多的水汽进入台风中心,释放凝结潜热,增强台风次级环流。对流增强使得内核区域下沉气流增强,进而加强台风暖心,导致中心气压降低,台风增强;同时,入流的增强使得更多的涡度和角动量向台风中心输送,台风结构紧致,平均切向风增大,台风增强。 |
Utilizing the sea surface temperature(SST) forcing fields with different time resolution, the super Typhoon "Lekima" is simulated by the Weather Research and Forecasting model. The result shows that, the effect of SST forcing with different time resolution on the track of the typhoon can be ignored, but the effect on the intensity of typhoon is significant. Compared with the daily averaged SST forcing field, the SST forcing with high time resolution contains the signal before the SST-TC interaction which induces one warmer eddy on the track of the typhoon, and finally leads to a stronger typhoon. The simulated track with high time resolution SST is closer to the best track of Typhoon "Lekima" of CMA, especially during rapid intensification phase. Through the analysis of thermodynamic and dynamic processes during Typhoon "Lekima", it is found that:SST forcing field with high time resolution generates increased water vapor into the typhoon center and releases the latent heat of condensation, leading to the enhancement of the secondary circulation. The enhancement of convection makes the downdraft in the core region stronger, then strengthens the warm core, decreases the sea level pressure of the typhoon center, finally leads to the intensification of the typhoon. Meanwhile, the enhancement of inflow makes more vorticity and angular momentum transport to the typhoon center, which leads to compact typhoon structure and increases the mean tangential wind, finally produces a stronger typhoon. |
参考文献:
|
[1] PEDUZZI P, CHATENOUX B, DAO H, et al. Global trends in tropical cyclone risk[J]. Nature Climate Change, 2012, 2(4):289-294. [2] 周磊,陈大可,雷小途,等.海洋与台风相互作用研究进展[J].科学通报, 2019, 64(1):60-72.ZHOU L, CHEN D K, LEI X T, et al. Progress and perspective on interactions between ocean and typhoon[J]. Chinese Science Bulletin, 2019, 64(1):60-72. [3] YE J Y, LIN G F, ZHANG M F, et al. Hazard analysis of typhoon disaster-causing factors based on different landing paths:a case study of Fujian Province, China[J]. Natural Hazards, 2020, 100(2):811-828. [4] 罗金炎,徐飞,李燕,等.福建省台风灾害损失分布分析[J].沈阳师范大学学报(自然科学版), 2020, 38(5):417-421.LUO J Y, XU F, LI Y, et al. Analysis on the distribution of typhoon disaster losses in Fujian province[J]. Journal of Shenyang Normal University (Natural Science Edition), 2020, 38(5):417-421. [5] 闫绪娴,范玲,阮嘉珺."一带一路"沿线国家台风灾害关联经济损失研究——以2018年"山竹"台风灾害为例[J].灾害学, 2021,36(1):7-12.YAN X X, FAN L, RUAN J J. The relational economic losses assessment of typhoon disaster among the belt and road countries:taking the typhoon Mangkhut in 2018 as an example[J]. Journal of Catastrophology, 2021, 36(1):7-12. [6] 戎晓洪.海上风电场防台风措施研究[J].南方能源建设, 2016, 3(S1):77-81.RONG X H. Study on typhoon prevention measures of offshore wind farm[J]. Southern Energy Construction, 2016, 3(S1):77-81. [7] 高晓霞,罗茵.水电巨头布局广东海上风电产业——三峡集团打造海上风电新蓝图[J].海洋与渔业, 2018(5):37-40.GAO X X, LUO Y. Hydropower giants lay out Guangdong's offshore wind power industry——Three Gorges group creates a new blueprint for offshore wind power[J]. Ocean and Fishery, 2018(5):37-40. [8] 芦直跃,马宏旺,李玉韬,等.台风对海上风电单桩基础累积变形影响试验研究[J].海洋技术学报, 2019, 38(6):75-82.LU Z Y, MA H W, LI Y T, et al. Experimental study on the effect of typhoons on accumulated deformation of the monopile foundation for offshore wind turbines[J]. Journal of Ocean Technology, 2019, 38(6):75-82. [9] TORN R D. Evaluation of atmosphere and ocean initial condition uncertainty and stochastic exchange coefficients on ensemble tropical cyclone intensity forecasts[J]. Monthly Weather Review,2016, 144(8):3487-3506, doi:10.1175/MWR-D-16-0108.1. [10] EMANUEL K, ZHANG F Q. On the predictability and error sources of tropical cyclone intensity forecasts[J]. Journal of the Atmospheric Sciences, 2016, 73(8):3739-3747. [11] EMANUEL K, DESAUTELS C, HOLLOWAY C, et al.Environmental control of tropical cyclone intensity[J]. Journal of the Atmospheric Sciences, 2004, 61(7):843-858. [12] NASROLLAHI N, AGHAKOUCHAK A, LI J L, et al. Assessing the impacts of different WRF precipitation physics in hurricane simulations[J]. Weather and Forecasting, 2012, 27(4):1003-1016. [13] SHEPHERD T J, WALSH K J. Sensitivity of hurricane track to cumulus parameterization schemes in the WRF model for three intense tropical cyclones:impact of convective asymmetry[J].Meteorology and Atmospheric Physics, 2017, 129(4):345-374. [14] PARKER C L, LYNCH A H, MOONEY P A. Factors affecting the simulated trajectory and intensification of Tropical Cyclone Yasi (2011)[J]. Atmospheric Research, 2017, 194:27-42. [15] PRICE J F. Upper ocean response to a hurricane[J]. Journal of Physical Oceanography, 1981, 11(2):153-175. [16] EMANUEL K A. The maximum intensity of hurricanes[J].Journal of the Atmospheric Sciences, 1988, 45(7):1143-1155. [17] SCHADE L R. Tropical cyclone intensity and sea surface temperature[J]. Journal of the Atmospheric Sciences, 2000, 57(18):3122-3130. [18] SHAY L K, GONI G J, BLACK P G. Effects of a warm oceanic feature on Hurricane Opal[J]. Monthly Weather Review, 2000, 128(5):1366-1383. [19] ČRNIVEC N, SMITH R K, KILROY G. Dependence of tropical cyclone intensification rate on sea-surface temperature[J].Quarterly Journal of the Royal Meteorological Society, 2016, 142(697):1618-1627. [20] 陶静雯,万莉颖,陈莉.高分辨率海温数据对1810号台风"安比"WRF数值模拟的影响[J].海洋预报, 2022, 39(1):80-90.TAO J W, WAN L Y, CHEN L. The impact of high resolution sea surface temperature data on typhoon "Ampil" (1810) simulation using WRF model[J]. Marine Forecasts, 2022, 39(1):80-90. [21] EVANS J L. Sensitivity of tropical cyclone intensity to sea surface temperature[J]. Journal of Climate, 1993, 6(6):1133-1140. [22] YING M, ZHANG W, YU H, et al. An overview of the China Meteorological Administration tropical cyclone database[J].Journal of Atmospheric and Oceanic Technology, 2014, 31(2):287-301. [23] LU X Q, YU H, YING M, et al. Western north pacific tropical cyclone database created by the China meteorological administration[J]. Advances in Atmospheric Sciences, 2021, 38(4):690-699. [24] LING T J, XU M, LIANG X Z, et al. A multilevel ocean mixed layer model resolving the diurnal cycle:development and validation[J]. Journal of Advances in Modeling Earth Systems,2015, 7(4):1680-1692. [25] LI X, LING T J, ZHANG Y F, et al. A 31-year global diurnal sea surface temperature dataset created by an ocean mixed-layer model[J]. Advances in Atmospheric Sciences, 2018, 35(12):1443-1454. [26] KAPLAN J, DEMARIA M. Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin[J].Weather and Forecasting, 2003, 18(6):1093-1108. [27] HOLLIDAY C R, THOMPSON A H. Climatological characteristics of rapidly intensifying typhoons[J]. Monthly Weather Review, 1979, 107(8):1022-1034. [28] SKAMAROCK W C, KLEMP J B, DUDHIA J, et al. A description of the advanced research WRF version 3[R]. No.NCAR/TN-475+STR, Boulder:University Corporation for Atmospheric Research, 2008:113. [29] KAIN J S. The Kain-Fritsch convective parameterization:an update[J]. Journal of Applied Meteorology and Climatology,2004, 43(1):170-181. [30] ROGERS E, BLACK T, FERRIER B, et al. Changes to the NCEP Meso eta analysis and forecast system:increase in resolution, new cloud microphysics, modified precipitation assimilation, modified 3DVAR analysis[J]. NWS Technical Procedures Bulletin, 2001,488:15. [31] DUDHIA J. Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model[J]. Journal of the Atmospheric Sciences, 1989, 46(20):3077-3107. [32] MLAWER E J, TAUBMAN S J, BROWN P D, et al. Radiative transfer for inhomogeneous atmospheres:RRTM, a validated correlated-k model for the longwave[J]. Journal of Geophysical Research:Atmospheres, 1997, 102(D14):16663-16682. [33] HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134(9):2318-2341. [34] KANADA S, WADA A. Numerical study on the extremely rapid intensification of an intense tropical cyclone:Typhoon Ida (1958)[J]. Journal of the Atmospheric Sciences, 2015, 72(11):4194-4217. [35] CHANG C C, WU C C. On the processes leading to the rapid intensification of Typhoon Megi (2010)[J]. Journal of the Atmospheric Sciences, 2017, 74(4):1169-1200. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|