HY-2C卫星散射计海面风场产品的检验评估 |
作者:刘晓燕1 2 3 郝赛1 3 彭炜1 2 3 刘宇昕2 张洁1 3 |
单位:1. 国家海洋环境预报中心, 北京 100081; 2. 自然资源部空间海洋遥感与应用研究重点实验室, 北京 100081; 3. 国家海洋环境预报中心 自然资源部海洋灾害预报技术重点实验室, 北京 100081 |
关键词:HY-2C卫星 散射计海面风场 检验 评估 |
分类号:P732 |
|
出版年·卷·期(页码):2024·41·第二期(92-103) |
摘要:
|
基于中国近海浮标的逐小时海面风矢量实测数据、ASCAT散射计风场数据以及欧洲中期天气预报中心的第五代全球再分析数据(ERA5)的逐小时风场数据,使用统计分析方法对HY-2C卫星散射计海面风场数据产品进行检验评估,检验使用的是2~24 m/s风速区间内的数据。结果表明:使用11个浮标共计3 351个样本数据作为真值进行检验,风速和风向的均方根误差分别为1.01 m/s和20.7°使用8 304 963个ASCAT样本数据进行检验,风速和风向的均方根误差分别为0.66 m/s和11.5°使用ERA5风场数据进行全球区域检验,风速和风向的均方根误差分别为1.05 m/s和12.0°使用ERA5风场数据进行西北太平洋区域检验,风速和风向的均方根误差分别为1.19 m/s和15.5°。由此可见,HY-2C卫星散射计海面风场产品质量的可信度较高,能够较好地满足业务化应用的精度要求。 |
Based on the hourly sea surface wind vector data observed by the China's offshore buoys, ASCAT scatterometer sea surface wind field data and the fifth generation of the European Center for Medium-Range Weather Forecasts reanalysis wind data(ERA5), this paper examines and evaluates the HY-2C satellite scatterometer sea surface wind field products in 2~24 m/s wind speed range by using statistical analysis. The results show that in comparison to 3 351 sample wind vector data of 11 buoys, the root mean square errors(RMSEs) of wind speed and direction are 1.01 m/s and 20.7°, respectively. When using 8 304 963 ASCAT sample wind field data for examination, the RMSEs of wind speed and direction are 0.66 m/s and 11.5 °, respectively.With respect to the ERA5 wind field data for global regional examination, the RMSEs of wind speed and direction are 1.05 m/s and 12.0°, respectively. With respect to the ERA5 wind field data for the Northwestern Pacific region examination, the RMSEs of wind speed and direction are 1.19 m/s and 15.5°, respectively. In summary, the quality of the HY-2C satellite scatterometer sea surface wind field products has a high reliability and the products can satisfy the operational precision requirement well. |
参考文献:
|
[1] 张东翔.多源卫星海面风场产品检验及融合研究[D].长沙:国防科技大学, 2018.ZHANG D X. Research of multi-source satellite sea surface wind validation and data fusion[D]. Changsha:National University of Defense Technology, 2018. [2] 渠鸿宇,黄彬,赵伟,等. HRCLDAS-V1.0和ERA5海面风场对比评估分析[J].热带气象学报, 2022, 38(4):569-579.QU H Y, HUANG B, ZHAO W, et al. Comparison and evaluation of HRCLDAS-V1.0 and ERA5 sea-surface wind fields[J]. Journal of Tropical Meteorology, 2022, 38(4):569-579. [3] ZHAO K, ZHAO C F, CHEN G. Evaluation of Chinese scatterometer ocean surface wind data:preliminary analysis[J].Earth and Space Science, 2021, 8(7):e2020EA001482. [4] 林明森,张有广,袁欣哲.海洋遥感卫星发展历程与趋势展望[J].海洋学报, 2015, 37(1):1-10.LIN M S, ZHANG Y G, YUAN X Z. The development course and trend of ocean remote sensing satellite[J]. Haiyang Xuebao, 2015,37(1):1-10. [5] 刘建强,蒋兴伟,林明森.我国海洋卫星发展历程、现状与建议[J].卫星应用, 2021(9):14-18.LIU J Q, JIANG X W, LIN M S. The development course, status and suggestion of Chinese ocean satellite[J]. Satellite Application,2021(9):14-18. [6] 刘建强,叶小敏,兰友国.我国海洋卫星遥感大数据及其应用服务[J].大数据, 2022, 8(2):75-88.LIU J Q, YE X M, LAN Y G. Remote sensing big data from Chinese ocean satellites and its application service[J]. Big Data Research, 2022, 8(2):75-88. [7] 林明森,何贤强,贾永君,等.中国海洋卫星遥感技术进展[J].海洋学报, 2019, 41(10):99-112.LIN M S, HE X Q, JIA Y J, et al. Advances in marine satellite remote sensing technology in China[J]. Haiyang Xuebao, 2019, 41(10):99-112. [8] 陈克海,解学通,张金兰,等. HY-2B卫星散射计海面风场产品质量分析[J].热带海洋学报, 2020, 39(6):30-40.CHEN K H, XIE X T, ZHANG J L, et al. Accuracy analysis of the retrieved wind from HY-2B scatterometer[J]. Journal of Tropical Oceanography, 2020, 39(6):30-40. [9] 林明森,邹巨洪,解学通,等. HY-2A微波散射计风场反演算法[J].中国工程科学, 2013, 15(7):68-74.LIN M S, ZOU J H, XIE X T, et al. HY-2A microwave scatterometer wind retrieval algorithm[J]. Engineering Sciences,2013, 15(7):68-74. [10] 王东良,姚小海,孟雷,等.海洋二号卫星散射计风场产品真实性检验及分析[J].海洋预报, 2014, 31(4):47-53.WANG D L, YAO X H, MENG L, et al. Validation and analysis of wind field products of HY-2[J]. Marine Forecasts, 2014, 31(4):47-53. [11] WANG Z X, ZOU J H, STOFFELEN A, et al. Scatterometer sea surface wind product validation for HY-2C[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:6156-6164. [12] 张婷,张杰,杨俊钢,等.卫星散射计与海面平台所测的风场数据比较[J].海洋学研究, 2013, 31(2):45-51.ZHANG T, ZHANG J, YANG J G, et al. Comparison of seawind data between spaceborne scatterometer and platform measurements[J]. Journal of Marine Sciences, 2013, 31(2):45-51. [13] EBUCHI N, GRABER H C, CARUSO M J. Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(12):2049-2062. [14] 张增海,曹越男,刘涛,等. ASCAT散射计风场在我国近海的初步检验与应用[J].气象, 2014, 40(4):473-481.ZHANG Z H, CAO Y N, LIU T, et al. Preliminary validation and application of ASCAT scatterometer retrieved winds over China offshore seas[J]. Meteorological Monthly, 2014, 40(4):473-481. [15] 郭鑫,韩震,张雪薇,等. HY-2B卫星散射计神经网络多区间风速反演[J].海洋科学进展, 2021, 39(2):268-278.GUO X, HAN Z, ZHANG X W, et al. Multiple interval wind speed inversion for HY-2B satellite scatterometer based on neural network[J]. Advances in Marine Science, 2021, 39(2):268-278. [16] MAHRT L. Surface wind direction variability[J]. Journal of Applied Meteorology and Climatology, 2011, 50(1):144-152. [17] LIN W M, PORTABELLA M. Characterizing global sea surface local wind variability from ASCAT data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:4212210. [18] OSES N, AZPIROZ I, MARCHI S, et al. Analysis of copernicus' ERA5 climate reanalysis data as a replacement for weather station temperature measurements in machine learning models for olive phenology phase prediction[J]. Sensors, 2020, 20(21):6381. [19] 张巍,杜超凡,郭安博宇,等.一种机器学习海面风场快速融合的方法[J].海洋学报, 2022, 44(11):144-158.ZHANG W, DU C F, GUO A B Y, et al. Sea surface wind field smart fusion base on machine learning method[J]. Haiyang Xuebao, 2022, 44(11):144-158. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|