秋台风“梅花”造成浙江极端降水成因分析 |
作者:钱卓蕾1 沈哲文1 左骏2 |
单位:1. 绍兴市气象台, 浙江 绍兴 312000; 2. 绍兴市气象防灾减灾中心, 浙江 绍兴 312000 |
关键词:极端降水 外围雨带 等熵位涡 锋生 地形 |
分类号:P444 |
|
出版年·卷·期(页码):2024·41·第二期(104-116) |
摘要:
|
利用全球降水观测计划卫星降水率产品、地面加密自动站和ERA5再分析资料,对202212号台风“梅花”造成浙江极端降水的成因进行分析。结果表明:台风“梅花”造成的极端降水主要分布在沿海和四明山区,极值在四明山区,9月12—13日强降水由台风北侧外围雨带造成,14日则主要为台风本体降水;高层西南风急流的稳定以及台风“梅花”在移动过程中与西风槽结合有利于维持台风强度并引起台风动力结构不对称;台风“梅花”与副热带高压间的东风是台风发展的主要水汽来源,西太平洋上热带气旋的存在也有利于台风“梅花”北侧水汽输送加强,导致台风强降雨带偏北;台风“梅花”北侧高层始终有位涡下传至对流层中低层,促使低层扰动中心的发展,冷空气侵入造成浙江东部中尺度斜压锋生;受四明山地形影响,台风“梅花”环流西北侧的偏北风进入内陆后形成中尺度辐合线,山前抬升,山后下沉,有利于山前降水增幅。 |
By using GPM satellite 3-IMERGM precipitation rate product, ground encryption automatic station and ERA5 reanalysis data, the causes of extreme precipitation in Zhejiang Province during Typhoon"Muifa"(202212) are analyzed. The results show that the extreme precipitation mainly locates in the coastal area and Siming Mountain area with extreme value in the Siming Mountain area. The heavy precipitation is caused by the north outer rain belt of the typhoon on September 12-13, but due to the typhoon body on September 14. The stability of the high-level southwesterly jet and the typhoon's combination with the westerly trough during its moving benefit for the maintain of the typhoon intensity and leads to the asymmetry of the typhoon dynamic structure. The easterly jet between the typhoon and the subtropical high is the main water vapor source for the typhoon's development. The existence of another tropical cyclone over the western Pacific is also conducive to strengthen the water vapor transport on the northern side of the typhoon, which leads to the heavy north rain belt of the typhoon. There are always potential vortex disturbances in the upper layer of the north side of the typhoon flowing down to the middle and lower troposphere, which promotes the development of disturbance center in the lower troposphere. Meanwhile, cold air invades and causes mesoscale baroclinic frontogenesis in eastern Zhejiang Province. Affected by the topography of Siming Mountain, the northerly winds on the northwest side of the typhoon enter the inland and form a mesoscale convergence line. The air flow rises in front of the mountain and sinks in the back of the mountain, which is conducive to the increase of precipitation. |
参考文献:
|
[1] 许映龙,张玲,高拴柱.我国台风预报业务的现状及思考[J].气象, 2010, 36(7):43-49.XU Y L, ZHANG L, GAO S Z. The advances and discussions on China operational typhoon forecasting[J]. Meteorological Monthly,2010, 36(7):43-49. [2] 王晓,余晖,鲍旭炜,等. "菲特" (1323)台风降水的极端性分析[J].气象科学, 2017, 37(4):514-521.WANG X, YU H, BAO X W, et al. Analysis on extreme characteristics of the precipitation brought by typhoon "Fitow" (1323)[J]. Journal of the Meteorological Sciences, 2017, 37(4):514-521. [3] 夏侯杰,朱伟军,任福民,等.南海夏季风对台风"启德"极端降水影响的数值模拟[J].气象科学, 2019, 39(3):295-303.XIA H J, ZHU W J, REN F M, et al. Numerical simulation on the influence of South China Sea summer monsoon on the extreme precipitation caused by typhoon "Kai-tak"[J]. Journal of the Meteorological Sciences, 2019, 39(3):295-303. [4] 陈联寿,罗哲贤,李英.登陆热带气旋研究的进展[J].气象学报,2004, 62(5):541-549.CHEN L S, LUO Z X, LI Y. Research advances on tropical cyclone landfall process[J]. Acta Meteorologica Sinica, 2004, 62(5):541-549. [5] REN F M, WANG Y M, WANG X L, et al. Estimating tropical cyclone precipitation from station observations[J]. Advances in Atmospheric Sciences, 2007, 24(4):700-711. [6] 郑怡,杨晓霞,孙晶.台风"温比亚"(1818)造成山东极端强降水的成因分析[J].海洋气象学报, 2019, 39(1):106-115.ZHENG Y, YANG X X, SUN J. Causal analysis of extremely heavy precipitation in Shandong Province caused by Typhoon RUMBIA (2018)[J]. Journal of Marine Meteorology, 2019, 39(1):106-115. [7] 雷小途,陈联寿.热带气旋的登陆及其与中纬度环流系统相互作用的研究[J].气象学报, 2001, 59(5):602-615.LEI X T, CHEN L S. Tropical cyclone landfalling and its interaction with mid-latitude circulation systems[J]. Acta Meteorologica Sinica, 2001, 59(5):602-615. [8] KNOX J L. The storm "Hazel":synoptic resuméof its development as it approached Southern Ontario[J]. Bulletin of the American Meteorological Society, 1955, 36(6):239-246. [9] SEKIOKA M. A hypothesis on complex of tropical and extratropical cyclones for typhoon in the middle latitudes:I. Synoptic structure of typhoon Marie passing over the Japan Sea[J]. Journal of the Meteorological Society of Japan, 1956, 34(5):276-287. [10] WANG Y Q, WANG Y Q, FUDEYASU H. The role of Typhoon Songda (2004) in producing distantly located heavy rainfall in Japan[J]. Monthly Weather Review, 2009, 137(11):3699-3716. [11] SCHUMACHER R S, GALARNEAU T J JR, BOSART L F.Distant effects of a recurving tropical cyclone on Rainfall in a Midlatitude convective system:a high-impact predecessor rain event[J]. Monthly Weather Review, 2011, 139(2):650-667. [12] 李英,陈联寿,王继志.登陆热带气旋长久维持与迅速消亡的大尺度环流特征[J].气象学报, 2004, 62(2):167-179.LI Y, CHEN L S, WANG J Z. The diagnostic analysis on the characteristics of large scale circulation corresponding to the sustaining and decaying of tropical cyclone after it's landfall[J].Acta Meteorologica Sinica, 2004, 62(2):167-179. [13] 陈联寿,丁一汇.西太平洋台风概论[M].北京:科学出版社,1979.CHEN L S, DING Y H. Introduction to the typhoons over West Pacific[M]. Beijing:Science Press, 1979. [14] 刘会荣,李崇银.干侵入对济南"7.18"暴雨的作用[J].大气科学,2010, 34(2):374-386.LIU H R, LI C Y. Impacts of the dry intrusion on Jinan torrential rain occurring on 18 July 2007[J]. Chinese Journal of Atmospheric Sciences, 2010, 34(2):374-386. [15] 何立富,许爱华,陈涛."泰利"台风低压大暴雨过程冷空气与地形的作用[J].气象科技, 2009, 37(4):385-391.HE L F, XU A H, CHEN T. Cold air activities and topographic forcing in severe torrential rainfall in landing typhoon depression (Tailim)[J]. Meteorological Science and Technology, 2009, 37(4):385-391. [16] 曹晓岗,王慧,漆梁波.台风与冷空气对"13.10"上海特大暴雨过程的影响分析[J].暴雨灾害, 2014, 33(4):351-362.CAO X G, WANG H, QI L B. The combined effects of typhoon Fitow and Danas together with cool air on an excessive heavy rain from October 7 to 8 in 2013 in Shanghai[J]. Torrential Rain and Disasters, 2014, 33(4):351-362. [17] 汤鹏宇,何宏让,阳向荣,等.北京"7·21 "特大暴雨中的干侵入分析研究[J].高原气象, 2015, 34(1):210-219.TANG P Y, HE H R, YANG X R, et al. Research and analysis of dry intrusion during Beijing'7·21'extreme torrential rain[J].Plateau Meteorology, 2015, 34(1):210-219. [18] 吴志彦,李宏江,石燕清,等.山东半岛一次台风暴雨过程的冷空气侵入特征分析[J].暴雨灾害, 2016, 35(1):61-68.WU Z Y, LI H J, SHI Y Q, et al. Characteristic analysis of cold air intrusion during a typhoon-related torrential rain event in Shandong Peninsula[J]. Torrential Rain and Disasters, 2016, 35(1):61-68. [19] 陈鹏,庞玥,张虹,等.台风与冷空气对重庆" 9.17 "大暴雨的影响分析[J].暴雨灾害, 2017, 36(3):227-234.CHEN P, PANG Y, ZHANG H, et al. The analysis of the" 9.17"heavy rainfall in Chongqing under the influence of the typhoon and cold air[J]. Torrential Rain and Disasters, 2017, 36(3):227-234. [20] 王瑾,柯宗建,江吉喜."麦莎"台风暴雨落区非对称分布的诊断分析[J].热带气象学报, 2007, 23(6):563-568.WANG J, KE Z J, JIANG J X. A diagnostic analysis to the asymmetric distribution of typhoon rainfall area[J]. Journal of Tropical Meteorology, 2007, 23(6):563-568. [21] 王勇,丁治英,李勋,等.台风"海棠"(2005)登陆前后非对称螺旋雨带特征分析[J].热带气象学报, 2010, 26(5):544-554.WANG Y, DING Z Y, LI X, et al. Dynamic analysis of asymmetric spiral rain bands around the landing of Typhoon HAITANG (2005)[J]. Journal of Tropical Meteorology, 2010, 26(5):544-554. [22] 岳彩军,曹钰."海棠"台风(2005)降水非对称分布特征成因之大气因子研究[J].热带气象学报, 2014, 30(2):219-228.YUE C J, CAO Y. Study on the genesis of asymmetrical distribution characteristics of precipitation associated with typhoon HAITANG (2005) from the viewpoint of atmospheric factor[J]. Journal of Tropical Meteorology, 2014, 30(2):219-228. [23] 孙力,董伟,药明,等. 1215号"布拉万"台风暴雨及降水非对称性分布的成因分析[J].气象学报, 2015, 73(1):36-49.SUN L, DONG W, YAO M, et al. A diagnostic analysis of the causes of the torrential rain and precipitation asymmetric distribution of typhoon Bolaven (2012)[J]. Acta Meteorologica Sinica, 2015, 73(1):36-49. [24] 冀春晓,薛根元,赵放,等.台风Rananim登陆期间地形对其降水和结构影响的数值模拟试验[J].大气科学, 2007, 31(2):233-244.JI C X, XUE G Y, ZHAO F, et al. The numerical simulation of orographic effect on the rain and structure of typhoon Rananim During Landfall[J]. Chinese Journal of Atmospheric Sciences,2007, 31(2):233-244. [25] CHEN L S, LUO Z X. A study of the effect of topography on the merging of vortices[J]. Advances in Atmospheric Sciences, 2004,21(1):13-22. [26] 段晶晶,钱燕珍,周福,等.台风灿鸿造成浙江东北部大暴雨地形作用的数值模拟研究[J].气象, 2017, 43(6):686-695.DUAN J J, QIAN Y Z, ZHOU F, et al. Numerical simulation of topographic effect on heavy rainfall in northeastern Zhejiang caused by typhoon Chan-Hom[J]. Meteorological Monthly, 2017,43(6):686-695. [27] 朱乾根,林锦瑞,寿绍文,等.天气学原理与方法[M]. 4版.北京:气象出版社, 2007:95-106.ZHU Q G, LIN J R, SHOU S W, et al. Synoptic principles and methods[M]. 4th ed. Beijing:China Meteorological Press, 2007:95-106. [28] 李文娟,俞小鼎,滕代高,等.中国江南-华南地区一次强飑线天气过程位涡诊断分析[J].气象与环境学报, 2021, 37(6):1-10.LI W J, YU X D, TENG D G, et al. Diagnostic analysis of potential vortex of a severe squall line weather process in South China[J]. Journal of Meteorology and Environment, 2021, 37(6):1-10. [29] 寿绍文,李耀辉,范可.暴雨中尺度气旋发展的等熵面位涡分析[J].气象学报, 2001, 59(5):560-568.SHOU S W, LI Y H, FAN K. Isentropic potential vorticity analysis of the mesoscale cyclone development in a heavy rain process[J]. Acta Meteorologica Sinica, 2001, 59(5):560-568. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|