首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
基于多算法分级权重集成的渤海西岸降水预报技术研究
作者:侯敏1 2  杨晓君3  王彩霞2  张楠3  许长义1 2  王国松4 
单位:1. 天津市海洋气象重点实验室, 天津 300074;
2. 天津市滨海新区气象局, 天津 300450;
3. 天津市气象台, 天津 300074;
4. 国家海洋信息中心, 天津 300171
关键词:沿海降水预报 分级权重集成 晴雨订正 个例检验 
分类号:P457.6
出版年·卷·期(页码):2024·41·第三期(71-79)
摘要:
以渤海西岸为研究区域,基于2019—2021年6—9月实况降水资料和模式预报数据,研发了一种新的降水集成预报技术,采用分级权重分配将 3种客观订正预报算法和 6种集合统计量算法进行集成,得到多算法分级权重集成预报(Hierarchical-weight Consensus Forecasting,HCF),然后以 2021年 9月渤海西岸一次典型强降水过程为例进行了检验评估。结果表明:HCF预报(08时—次日08时)的所有降水量级的TS评分均高于欧洲中期天气预报中心(ECMWF)的模式预报;相较于ECMWF模式预报和其他客观预报,HCF在降水量级和落区预报方面均表现良好,08时—次日08 时的大雨及以上量级的 TS 评分最高,其他降水量级检验评估指标也均在前三位;在个例检验中,HCF 预报较 ECMWF 模式的所有降水量级的检验指标均更优秀,其中小雨预报的 TS 评分较ECMWF模式提升41.76%,大雨预报评分提升54.42%。
Taking the precipitation forecasts in the west coast of the Bohai Sea (34°~43°N, 111°~121°E) as the research scope, based on the observations of meteorological stations and the European Centre for Medium-range Weather Forecasts (ECMWF) global forecasting product during June-September in 2019—2021, a Hierarchicalweight Consensus Forecasting (HCF) method is proposed by combining three objective - correction forecasting algorithms and six ensemble statistical forecasting algorithms according to different weights. The HCF method is validated through the forecasts of a typical heavy rainy process in September 2021. The results are as follows: the TS scores of the HCF method are higher than those of the ECMWF forecasts on precipitation of 08:00~08:00 the next day in all precipitation levels. Compared with other precipitation forecasting products, the HCF method performs well on precipitation intensity and fall area, with the highest TS score in heavy rain and above on precipitation of 08:00~08:00 the next day and top-three TS score for other precipitation levels. In the case test, the HCF method performs better than the ECMWF forecasts in all precipitation levels, with an increase of 41.76% on the TS score of light rain and an increase of 54.42% on the TS score of heavy rain.
参考文献:
[1] BENTZIEN S, FRIEDERICHS P. Generating and calibrating probabilistic quantitative precipitation forecasts from the high-resolution NWP model COSMO-DE[J]. Weather and Forecasting, 2012, 27(4):988-1002.
[2] BROWN J D, SEO D J, DU J. Verification of precipitation forecasts from NCEP's short-range ensemble forecast (SREF) system with reference to ensemble streamflow prediction using lumped hydrologic models[J]. Journal of Hydrometeorology, 2012, 13(3):808-836.
[3] HAMILL T M, HAGEDORN R, WHITAKER J S. Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part II:precipitation[J]. Monthly Weather Review, 2008, 136(7):2620-2632.
[4] EBERT E E, DAMRATH U, WERGEN W, et al. Supplement to the WGNE assessment of short-term quantitative precipitation forecasts[J]. Bulletin of the American Meteorological Society, 2003, 84(4):492.
[5] HENSE A, WULFMEYER V. The German priority program SPP 1167"quantitative precipitation forecast" [J]. Meteorologische Zeitschrift, 2008, 17(6):703-705.
[6] 危国飞,刘会军,吴启树,等.多模式降水分级最优化权重集成预报技术[J].应用气象学报, 2020, 31(6):668-680. WEI G F, LIU H J, WU Q S, et al. Multi-model consensus forecasting technology with optimal weight for precipitation intensity levels[J]. Journal of Applied Meteorological Science, 2020, 31(6):668-680.
[7] 代刊,朱跃建,毕宝贵.集合模式定量降水预报的统计后处理技术研究综述[J].气象学报, 2018, 76(4):493-510. DAI K, ZHU Y J, BI B G. The review of statistical post-process technologies for quantitative precipitation forecast of ensemble prediction system[J]. Acta Meteorologica Sinica, 2018, 76(4):493-510.
[8] ZHU Y J, LUO Y. Precipitation calibration based on the frequencymatching method[J]. Weather and Forecasting, 2015, 30(5):1109-1124.
[9] 吴启树,韩美,刘铭,等.基于评分最优化的模式降水预报订正算法对比[J].应用气象学报, 2017, 28(3):306-317. WU Q S, HAN M, LIU M, et al. A comparison of optimal-scorebased correction algorithms of model precipitation prediction[J]. Journal of Applied Meteorological Science, 2017, 28(3):306-317.
[10] 智协飞,吕游.基于频率匹配法的中国降水多模式预报订正研究[J].大气科学学报, 2019, 42(6):814-823. ZHI X F, LYU Y. Calibration of the multimodel precipitation forecasts in China using the frequency matching method[J]. Transactions of Atmospheric Sciences, 2019, 42(6):814-823.
[11] 李俊,杜钧,陈超君."频率匹配法"在集合降水预报中的应用研究[J].气象, 2015, 41(6):674-684. LI J, DU J, CHEN C J. Applications of "frequency-matching" method to ensemble precipitation forecasts[J]. Meteorological Monthly, 2015, 41(6):674-684.
[12] 从靖,吴振玲,田笑,等.海河流域东北冷涡背景下的降水预报订正研究[J].气候与环境研究, 2021, 26(5):556-568. CONG J, WU Z L, TIAN X, et al. Correction of precipitation forecast under the northeast cold vortex in the Haihe River Basin[J]. Climatic and Environmental Research, 2021, 26(5):556-568.
[13] 李莉,李应林,田华,等. T213全球集合预报系统性误差订正研究[J].气象, 2011, 37(1):31-38. LI L, LI Y L, TIAN H, et al. Study of bias-correction in T213 global ensemble forecast[J]. Meteorological Monthly, 2011, 37(1):31-38.
[14] 徐姝,尉英华,熊明明,等.频率匹配法在海河流域ECMWF集合预报融合产品中的应用研究[J].气象与环境学报, 2018, 34(4):11-17. XU S, WEI Y H, XIONG M M, et al. Application of frequencymatching method to ECMWF ensemble statistic fusing prediction products in the Haihe River Basin[J]. Journal of Meteorology and Environment, 2018, 34(4):11-17.
[15] 陈博宇,代刊,郭云谦. 2013年汛期ECMWF集合统计量产品的降水预报检验与分析[J].暴雨灾害, 2015, 34(1):64-73. CHEN B Y, DAI K, GUO Y Q. Precipitation verification and analysis of ECMWF ensemble statistic products in 2013 flooding season[J]. Torrential Rain and Disasters, 2015, 34(1):64-73.
[16] 罗聪,张华龙,曾沁,等.多模式融合的广东网格定量降水预报方法的研发与评估[J].气象, 2021, 47(5):539-549. LUO C, ZHANG H L, ZENG Q, et al. Development and verification of a gridded quantitative precipitation forecast method in Guangdong Province based on multi-model integration[J]. Meteorological Monthly, 2021, 47(5):539-549.
[17] 苏翔,袁慧玲,朱跃建.四种定量降水预报客观订正方法对比研究[J].气象学报, 2021, 79(1):132-149. SU X, YUAN H L, ZHU Y J. A comparative study of four objective quantitative precipitation forecast calibration methods[J]. Acta Meteorologica Sinica, 2021, 79(1):132-149.
[18] EBERT E E. Ability of a poor man's ensemble to predict the probability and distribution of precipitation[J]. Monthly Weather Review, 2001, 129(10):2461-2480.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号 电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn
本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626