摘要:
|
通过欧州中期天气预报中心大气再分析资料ERA5资料驱动WRF模式,对2019年6月4—6日发生于浙江沿海的一次平流雾过程开展模拟实验,并利用浙江省气象自动站逐小时气象观测数据检验 4种边界层参数化方案(YSU、QNSE、ACM2、MYJ)的模拟能力。结果表明:从对地面气象要素的检验来看,各边界层方案整体对气温和相对湿度的模拟效果较好,但对风速的模拟均较观测结果存在一定的高估,其中 ACM2与YSU方案对相对湿度和风速的预报效果总体好于QNSE与MYJ方案,且ACM2方案在相对湿度的预报平稳度以及误差检验上要优于YSU方案。ACM2方案可以较好地再现此次过程海雾的生消演变及雾区分布;YSU方案预报的雾区范围偏大,存在一定空报;而 QNSE与MYJ方案则对海-陆雾区分布的把控能力有限。边界层高度直接反映湍流运动的强度,继而影响海雾的生消与发展。局地闭合模型QNSE与MYJ相较于非局地闭合模型YSU和ACM2对沿海地区的湍流混合强度估计不足,造成了对沿海雾区的一定漏报。 |
An advection fog process during 4—6 June 2019 over Zhejiang coastal area is simulated using the WRF model driven by the ERA5 data, and the effects of different boundary layer parameterization schemes (YSU, QNSE, ACM2, MYJ) on the simulation results are studied in comparison with observed meteorological data. The results show that all boundary layer parameterization schemes perform well on simulating surface air temperature and relative humidity, but all of them overestimate surface wind speed. The ACM2 and YSU schemes overall perform better than the QNSE and MYJ schemes on the relative humidity and surface wind speed simulation. The ACM2 scheme exhibits a better capacity than the YSU scheme on the relative humidity prediction stability and error test. The ACM2 scheme generates reasonable temporal evolution and spatial distribution of the fog. The YSU scheme overestimates the fog zone and generates occasional fail forecast. The QNSE and MYJ schemes produce insufficient accuracy in the spatial distribution of sea — land fog zone. Boundary layer height directly reflects the intensity of turbulent flows, and thus plays a critical role in the evolution of advection fogs. Compared with the YSU and ACM2 schemes, the QNSE and MYJ schemes underestimate the turbulent mixing intensity in coastal areas, resulting in occasional fail forecast of coastal fog zone. |
参考文献:
|
[1] 李子华. 中国近40年来雾的研究[J]. 气象学报, 2001, 59(5): 616- 624. LI Z H. Studies of fog in China over the past 40 years[J]. Acta Meteorologica Sinica, 2001, 59(5): 616-624. [2] 傅刚, 李鹏远, 张苏平, 等. 中国海雾研究简要回顾[J]. 气象科技进展, 2016, 6(2): 20-28. FU G, LI P Y, ZHANG S P, et al. A brief overview of the sea fog study in China[J]. Advances in Meteorological Science and Technology, 2016, 6(2): 20-28. [3] 俞燎霓, 胡波, 黄新晴, 等. 浙江沿海大雾的时空分布特征及影响因子分析[J]. 气象科技, 2017, 45(2): 324-330. YU L N, HU B, HUANG X Q, et al. Temporal and spatial distribution and influencing factor analysis of coastal fogs in Zhejiang[J]. Meteorological Science and Technology, 2017, 45(2): 324-330. [4] 田小毅, 张志薇. 长江沿海地区雾的特征及影响因子分析[J]. 灾害学, 2019, 34(1): 51-55. TIAN X Y, ZHANG Z W. Characteristics and influence factors of fog in the coastal area of Yangtze River[J]. Journal of Catastrophology, 2019, 34(1): 51-55. [5] 孙文文, 江洪, 陈晓峰, 等. 浙江北部气溶胶时空动态与区域雾霾事件分析[J]. 科技通报, 2016, 32(8): 230-236. SUN W W, JIANG H, CHEN X F, et al. Analysis of regional haze event and the temporal and spatial dynamic of aerosol in northern Zhejiang[J]. Bulletin of Science and Technology, 2016, 32(8): 230- 236. [6] 俞涵婷, 廖晨昕, 王可欣, 等. 浙江中南部海雾预报决策树模型研究[J]. 海洋预报, 2020, 37(6): 96-101. YU H T, LIAO C X, WANG K X, et al. A decision-tree forecasting model of sea fog for the central and southern coastal area of Zhejiang Province[J]. Marine Forecasts, 2020, 37(6): 96-101. [7] 王锐, 刘彬贤. 一次弱冷空气对渤海海雾影响的数值模拟研究[J]. 海洋预报, 2021, 38(6): 82-92. WANG R, LIU B X. Numerical simulation study of the influence of cold air on sea fog in the Bohai[J]. Marine Forecasts, 2021, 38(6): 82-92. [8] 高山红, 齐伊玲, 张守宝, 等. 利用循环3DVAR改进黄海海雾数值模拟初始场. Ⅰ: WRF数值试验[J]. 中国海洋大学学报, 2010, 40(10): 1-9. GAO S H, QI Y L, ZHANG S B, et al. Initial conditions improvement of sea fog numerical modeling over the yellow sea by using cycling 3DVAR Part Ⅰ : WRF numerical experiments[J]. Periodical of Ocean University of China, 2010, 40(10): 1-9. [9] 杨中秋, 许绍祖, 耿骠. 舟山地区春季海雾的形成和微物理结构[J]. 海洋学报, 1989, 11(4): 431-438. YANG Z Q, XU S Z, GENG B. Formation and microphysical structure of spring sea fog in Zhoushan area[J]. Acta Oceanologica Sinica, 1989, 11(4): 431-438. [10] 陆春松, 牛生杰, 岳平, 等. 南京冬季雾多发期边界层结构观测分析[J]. 大气科学学报, 2011, 34(1): 58-65. LU C S, NIU S J, YUE P, et al. Observational research on boundary layer structure during high incidence period of winter fog in Nanjing[J]. Transactions of Atmospheric Sciences, 2011, 34(1): 58-65. [11] 杨军, 谢玉静, 石春娥, 等. 南京冬季辐射雾和平流辐射雾的化学特征差异[J]. 大气科学学报, 2009, 32(6): 776-782. YANG J, XIE Y J, SHI C E, et al. Differences in ion compositions of winter fogwater between radiation and advection-radiation fog episodes in Nanjing[J]. Transactions of Atmospheric Sciences, 2009, 32(6): 776-782. [12] 周玲丽, 翟国庆, 王东海, 等. 0713号“韦帕”台风暴雨的中尺度数值研究和非对称性结构分析[J]. 大气科学, 2011, 35(6): 1046- 1056. ZHOU L L, ZHAI G Q, WANG D H, et al. Mesoscale numerical study of the rainstorm and asymmetric structure of 0713 typhoon Wipha[J]. Chinese Journal of Atmospheric Sciences, 2011, 35(6): 1046-1056. [13] 林杨, 沈桐立, 胡琳, 等. 陕西冬季一次大雾天气的数值模拟和生消机制分析[J]. 陕西气象, 2008(4): 24-28. LIN Y, SHEN T L, HU L, et al. Numerical simulation and analysis on formation and dissipation mechanism of a heavy frog in winter in Shaanxi Province[J]. Journal of Shaanxi Meteorology, 2008(4): 24-28. [14] 杨依莹. 地形对昆明机场一次典型大雾天气的影响研究[D]. 天津: 中国民航大学, 2017. YANG Y Y. Research of topographical impact on a typical heavy fog weather condition at Kunming airport[D]. Tianjin: Civil Aviation University of China, 2017. [15] 陆雪, 高山红, 饶莉娟, 等. 春季黄海海雾WRF参数化方案敏感性研究[J]. 应用气象学报, 2014, 25(3): 312-320. LU X, GAO S H, RAO L J, et al. Sensitivity study of WRF parameterization schemes for the spring sea fog in the Yellow Sea [J]. Journal of Applied Meteorological Science, 2014, 25(3): 312- 320. [16] 王益柏, 梅娜, 范磊, 等. WRF模式对2013年1月华北一次大雾的数值对比试验[J]. 气象, 2014, 40(12): 1522-1529. WANG Y B, MEI N, FAN L, et al. Comparative experiments of WRF simulation on a fog event of January 2013 in North China [J]. Meteorological Monthly, 2014, 40(12): 1522-1529. [17] PÉREZ C, JIMÉNEZ P, JORBA O, et al. Influence of the PBL scheme on high-resolution photochemical simulations in an urban coastal area over the western Mediterranean[J]. Atmospheric Environment, 2006, 40(27): 5274-5297. [18] 黄政, 袁成松, 包云轩, 等. 基于不同参数化方案的高速公路大雾过程的数值模拟试验[J]. 气象, 2016, 42(8): 944-953. HUANG Z, YUAN C S, BAO Y X, et al. Numerical simulations of heavy fog processes on expressways based on different parameterization schemes[J]. Meteorological Monthly, 2016, 42(8): 944-953. [19] 李伟, 邵利民, 唐君, 等. 基于WRF的黄渤海海雾数值模拟参数化方案研究[J]. 海洋预报, 2019, 36(2): 88-96. LI W, SHAO L M, TANG J, et al. Research on the parameterization scheme in simulating sea fog in the Yellow Sea and Bohai Sea based on WRF model[J]. Marine Forecasts, 2019, 36(2): 88-96. [20] KIOUTSIOUKIS I, DE MEIJ A, JAKOBS H, et al. High resolution WRF ensemble forecasting for irrigation: multivariable evaluation[J]. Atmospheric Research, 2016, 167: 156- 174. [21] 杨悦, 高山红. 黄海海雾WRF数值模拟中垂直分辨率的敏感性研究[J]. 气象学报, 2016, 74(6): 974-988. YANG Y, GAO S H. Sensitivity study of vertical resolution in WRF numerical simulation for sea fog over the Yellow Sea[J]. Acta Meteorologica Sinica, 2016, 74(6): 974-988. [22] 李鹏远. 黄海海雾的观测和基于WRF模式的数值模拟研究[D]. 青岛: 中国海洋大学, 2011. LI P Y. An observational and modeling study of sea fogs over the Yellow Sea based upon WRF model[D]. Qingdao: Ocean University of China, 2011. [23] 陈俊文, 蔡扬, 白毅平, 等. 南海冬季一次海面大风天气的WRF模式预报检验[J]. 海洋预报, 2014, 31(4): 32-40. CHEN J W, CAI Y, BAI Y P, et al. Simulation of one gale case in winter in the South China Sea[J]. Marine Forecasts, 2014, 31(4): 32-40. [24] 刘郁珏, 苗世光, 刘磊, 等. 修正WRF次网格地形方案及其对风速模拟的影响[J]. 应用气象学报, 2019, 30(1): 70-81. LIU Y J, MIAO S G, LIU L, et al. Effects of a modified sub-gridscale terrain parameterization scheme on the simulation of lowlayer wind over complex terrain[J]. Journal of Applied Meteorological Science, 2019, 30(1): 70-81. [25] KUNKEL B A. Parameterization of droplet terminal velocity and extinction coefficient in fog models[J]. Journal of Climate and Applied Meteorology, 1984, 23(1): 34-41. [26] 包云轩, 丁秋冀, 袁成松, 等. 沪宁高速公路一次复杂性大雾过程的数值模拟试验[J]. 大气科学, 2013, 37(1): 124-136. BAO Y X, DING Q J, YUAN C S, et al. Numerical simulations of a highly complex fog event on Shanghai–Nanjing expressway [J]. Chinese Journal of Atmospheric Sciences, 2013, 37(1): 124- 136. [27] 崔驰潇, 包云轩, 袁成松, 等. 不同边界层参数化方案对江苏地区一次平流雾过程的模拟影响[J]. 大气科学, 2018, 42(6): 1344- 1362. CUI C X, BAO Y X, YUAN C S, et al. Influence of different boundary layer parameterization schemes on the simulation of an advection fog process in Jiangsu[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(6): 1344-1362. [28] NIELSEN-GAMMON J W, POWELL C L, MAHONEY M J, et al. Multisensor estimation of mixing heights over a coastal city[J]. Journal of Applied Meteorology and Climatology, 2008, 47(1): 27- 43. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|