海南岛历史台风浪模拟和评估 |
作者:杨志衡1 2 3 牛小静1 2 3 |
单位:1. 清华大学水圈科学与水利工程全国重点实验室, 北京 100084; 2. 清华大学水利部水圈科学重点实验室, 北京 100084; 3. 清华大学水利水电工程系, 北京 100084 |
关键词:海南岛 南海 台风浪 SWAN模型 数值再现 |
分类号:P731.22 |
|
出版年·卷·期(页码):2024·41·第五期(26-33) |
摘要:
|
采用历史情景数值再现的方法研究了海南岛附近海域的台风浪灾害。基于中国国家气象局热带气旋中心的1959—2021年的热带气旋最佳路径数据集,通过模型风场与欧洲中尺度气象中心的再分析背景风场叠加构造热带气旋风场,结合第三代波浪模型模拟台风浪过程。将数值结果与2016年台风“萨莉嘉”和2022年台风“暹芭”期间波浪台站的测波数据进行了对比,证明了模型模拟精度良好。本文模拟再现了682场热带气旋过程中的风浪,基于模拟结果统计绘制了海南岛周边海域不同重现期波高的空间分布,并初步对海南岛沿岸台风浪的波高、波向和波周期特点进行评估。 |
This study conducts a series of numerical simulations to reconstruct storm waves around Hainan Island during historical typhoon scenarios happened in the South China Sea. Based on the best path dataset of typhoons from 1959 to 2021 provided by the Tropical Cyclone Data Center of the China Meteorological Administration, an empirical wind mode combined with the reanalysis wind field data obtained from European Centre for Medium-Range Weather Forecasts (ECMWF) has been used to drive the third-generation wave model SWAN, which is used to simulate the wave process during each typhoon event. The numerical results are compared with the observed data during the Typhoon "Sarika" in 2016 and Typhoon "Chaba" in 2022, proving the good accuracy of the model. Totally 682 typhoon events have been simulated. Based on the simulation results, the spatial distribution of wave characteristics around Hainan Island has been provided. Furthermore, the wave height, wave direction and wave period along the coast of Hainan Island have been preliminary evaluated. |
参考文献:
|
[1] AMAROUCHE K, AKPINAR A, BACHARI N E I, et al. Evaluation of a high-resolution wave hindcast model SWAN for the West Mediterranean Basin[J]. Applied Ocean Research, 2019, 84:225-241. [2] 王一心, 潘毅, 周凤妍, 等. 江苏海域台风浪波高时空分布特性研究[J]. 海洋预报, 2023, 40(5):23-34. WANG Y X, PAN Y, ZHOU F Y, et al. Study on the spatial and temporal distribution characteristics of typhoon wave height in Jiangsu coastal sea[J]. Marine Forecasts, 2023, 40(5):23-34. [3] 尹超. 海南岛近海热带气旋引起的台风浪风险评估研究[D]. 青岛:中国科学院大学(中国科学院海洋研究所), 2020. YIN C. Tropical cyclone induced storm wave hazard assessment in Hainan Island, China[D]. Qingdao:Institute of Oceanology, Chinese Academy of Sciences, 2020. [4] 石洪源, 曹雪峰, 文先华, 等. 台风“山神”过境期间南海西北部海南岛附近海区台风浪空间特征数值模拟研究[J]. 海洋环境科学, 2016, 35(3):366-373. SHI H Y, CAO X F, WEN X H, et al. Numerical model research of the spatial characteristics of typhoon waves in the northwestern of the south China sea near Hainan island during the transmit of typhoon“Son-Tink”[J]. Marine Environmental Science, 2016, 35(3):366-373. [5] 蒋璐璐, 涂小萍, 王毅, 等.“米娜”(1918)台风浪特征及其与“利奇马”(1909)的差异[J]. 海洋预报, 2021, 38(4):53-60. JIANG L L, TU X P, WANG Y, et al. Characteristics of typhooninduced wave by Mitag(1918) and their differences with that induced by typhoon Lekima(1909)[J]. Marine Forecasts, 2021, 38(4):53-60. [6] 郑祥靖. 福建宁德沿海重点工程海域可能最大台风浪分析[J]. 海洋湖沼通报, 2021, 43(4):55-61. ZHENG X J. Analysis of probable maximum typhoon wave for key coastal project in the Ningde City of Fujian Province[J]. Transactions of Oceanology and Limnology, 2021, 43(4):55-61. [7] 陈橙, 杜飞, 李焱, 等. 福建沿海台风浪模拟及其对台风路径平移的响应[J]. 水运工程, 2022(8):32-39. CHEN C, DU F, LI Y, et al. Simulation of typhoon waves along the coast of Fujian and its responses to typhoon path translation[J]. Port & Waterway Engineering, 2022(8):32-39. [8] LU X Q, YU H, YING M, et al. Western North Pacific tropical cyclone database created by the China meteorological administration[J]. Advances in Atmospheric Sciences, 2021, 38(4):690-699. [9] YING M, ZHANG W, YU H, et al. An overview of the China meteorological administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2):287-301. [10] The SWAN Team. SWAN scientific and technical documentation [M]. 2009. [11] LI X H, YANG J S, HAN G Q, et al. Tropical cyclone wind field reconstruction and validation using measurements from SFMR and SMAP radiometer[J]. Remote Sensing, 2022, 14(16):3929. [12] SCHENKEL B A, HART R E. An examination of tropical cyclone position, intensity, and intensity life cycle within atmospheric reanalysis datasets[J]. Journal of Climate, 2012, 25(10):3453-3475. [13] 陈雅雅, 邹仲水, 赵栋梁. 基于SWAN模式的台风浪数值模拟初步研究[J]. 海洋湖沼通报, 2017(6):1-10. CHEN Y Y, ZOU Z S, ZHAO D L. A preliminary study of typhoon wave based on numerical simulations using SWAN model [J]. Transactions of Oceanology and Limnology, 2017(6):1-10. [14] QI P, WANG A M. Numerical simulation of tropical cyclone generated waves in South China Sea during winter monsoon surge [J]. Scientific Reports, 2020, 10(1):22156. [15] 赵广生, 牛小静. 海南岛历史风暴潮模拟和灾害风险评估[J]. 水动力学研究与进展A辑, 2022, 37(6):831-836. ZHAO G S, NIU X J. Simulation of historical storm surge and hazard assessment around Hainan Island[J]. Chinese Journal of Hydrodynamics, 2022, 37(6):831-836. [16] 宗芳伊. 近20年南海波浪及波浪能分布、变化研究[D]. 青岛:中国海洋大学, 2014. ZONG F Y. Research on distributions and variations of sea wave and wave energy in South China Sea during recent 20 years[D]. Qingdao:Ocean University of China, 2014. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|