基于浮标观测和ERA5资料的浙江沿海海浪特征分析 |
作者:姚日升1 2 涂小萍3 徐蓉3 周凯2 缪群4 肖王星3 蒋璐璐3 |
单位:1. 宁波市生态环境气象中心, 浙江 宁波 315012; 2. 浙江省气象台, 浙江 杭州 310057; 3. 宁波市气象台, 浙江 宁波 315012; 4. 宁波大学 数学与统计学院, 浙江 宁波 315211 |
关键词:海浪 浮标 ERA5 危险等级 浙江 |
分类号:P731.22 |
|
出版年·卷·期(页码):2024·41·第五期(34-43) |
摘要:
|
基于舟山、温州两个浮标观测和ERA5再分析资料,开展浙江沿海风浪和涌浪特征统计,重点分析了风浪及其有效波高、波周期和海浪危险等级。结果发现:ERA5再分析资料与舟山、温州浮标观测值表现基本一致。风浪发生时两浮标10 m观测风和ERA5再分析风力均超过6级,涌浪多发生在风速小于4 m/s的弱风条件下。舟山浮标风浪主要出现在盛行风为NNW、NW和N风向时,而温州浮标风浪主要集中在N、NNE和NE风向。浙江沿海风浪多出现在冬半年的1—3月和11—12月,冷空气是造成该地区风浪事件的主要气象因子。海浪危险性月际分布显示,两浮标站均表现出5—6月危险等级较低,8—10月较高。风浪时的ERA5再分析资料表明:8月的风浪与台风密切相关,浙江沿海大范围地出现4 m以上巨浪,冬季冷空气和9—10月浙江沿海风浪主要为中到大浪,且浙南沿海各风浪要素值均高于浙北。冷空气风浪事件造成的Ⅱ级以上海浪危险等级范围最大,而台风会在浙江沿海造成较大范围的Ⅰ级海浪危险等级。 |
Analysis on wind wave and swell characteristics of Zhejiang coast is carried out based on two buoys, Observations offshore Zhoushan and Wenzhou, and the ERA5 reanalysis data, with emphasis on significant wave heights (SWH), wave periods (WP) and risk indices of wind wave. Results show that the ERA5 data is basically consistent with the buoy observations. Wind wave and swell generally occur under strong breezes of ≥10.8 m/s and light winds of below 4 m/s respectively. Wind wave mainly happens with prevailing winds from NNW, NW and N at the Zhoushan buoy, and N, NNE and NE at the Wenzhou buoy. The months with high frequency of wind wave are usually in winter half year, from January to March and from November to December, closely related to cold air masses. Monthly wave danger index shows that both buoys have a low risk level from May to June, and a high risk level from August to October. The ERA5 fields show wind wave in August is closely related to typhoon circulation, and SWH can be up above 4 m, while SWH of wind wave in winter and in months September and October is mainly between moderate and rough, and it displays higher wind wave elements along the southern Zhejiang coast than the northern coast. Cold air masses hold the widest coverage with wave risk above level Ⅱ, but only typhoons can cause wave risk of level Ⅰ in a large coverage of the coastal areas of Zhejiang. |
参考文献:
|
[1] 陈汨梨, 潘志刚, 徐啸, 等. 中国近海冷空气浪的参数化判别标准研究[J]. 中国港湾建设, 2020, 40(12):1-4. CHEN M L, PAN Z G, XU X, et al. Parameterized criterion for cold air wave in China's coastal seas[J]. China Harbour Engineering, 2020, 40(12):1-4. [2] 侯一筠, 尹宝树, 管长龙, 等. 我国海洋动力灾害研究进展与展望[J]. 海洋与湖沼, 2020, 51(4):759-767. HOU Y J, YIN B S, GUAN C L, et al. Progress and prospect in research on marine dynamic disasters in China[J]. Oceanologia et Limnologia Sinica, 2020, 51(4):759-767. [3] 陶爱峰, 沈至淳, 李硕, 等. 中国灾害性海浪研究进展[J]. 科技导报, 2018, 36(14):26-34. TAO A F, SHEN Z C, LI S, et al. Research progrecs for disastrous waves in China[J]. Science & Technology Review, 2018, 36(14):26-34. [4] 冯兴如, 杨德周, 尹宝树, 等. 中国浙江和福建海域台风浪变化特征和趋势[J]. 海洋与湖沼, 2018, 49(2):233-241. FENG X R, YANG D Z, YIN B S, et al. The change and trend of the typhoon waves in Zhejiang and Fujian coastal areas of China [J]. Oceanologia et Limnologia Sinica, 2018, 49(2):233-241. [5] 蒋璐璐, 涂小萍, 王毅, 等.“米娜”(1918)台风浪特征及其与“利奇马”(1909)的差异[J]. 海洋预报, 2021, 38(4):53-60. JIANG L L, TU X P, WANG Y, et al. Characteristics of typhooninduced wave by "Mitag" (1918) and their differences with that induced by typhoon "Lekima" (1909)[J]. Marine Forecasts, 2021, 38(4):53-60. [6] 冯月永, 周达, 周文清, 等. 西风带海洋环境观测技术研究[J]. 海洋技术学报, 2019, 38(4):21-26. FENG Y Y, ZHOU D, ZHOU W Q, et al. Research on westerlies environmental observation technology[J]. Journal of Ocean Technology, 2019, 38(4):21-26. [7] 王志勇, 王炜荔, 胡伟, 等. 青岛近岸海域波浪要素特征研究[J]. 海洋技术学报, 2021, 40(2):61-68. WANG Z Y, WANG W L, HU W, et al. Statistical analysis of wave characteristics in coastal waters of Qingdao[J]. Journal of Ocean Technology, 2021, 40(2):61-68. [8] 傅圆圆, 杨超, 姚远, 等. 秦皇岛海洋站海浪特征分析[J]. 海洋环境科学, 2022, 41(6):842-846. FU Y Y, YANG C, YAO Y, et al. Analysis of sea wave characteristics at Qinhuangdao station[J]. Marine Environmental Science, 2022, 41(6):842-846. [9] 易风, 冯卫兵, 曹海锦. 基于ERA-Interim资料近37年南海波浪时空特征分析[J]. 海洋预报, 2018, 35(1):44-51. YI F, FENG W B, CAO H J. Wave analysis based on ERA-Interim reanalysis data in the South China Sea[J]. Marine Forecasts, 2018, 35(1):44-51. [10] 谭海燕, 邵珠晓, 梁丙臣, 等. ERA5风场与NCEP风场在黄海、 东海波浪模拟的适用性对比研究[J]. 海洋通报, 2021, 40(5):524-540. TAN H Y, SHAO Z X, LIANG B C, et al. A comparative study on the applicability of ERA5 wind and NCEP wind for wave simulation in the Huanghai Sea and East China Sea[J]. Marine Science Bulletin, 2021, 40(5):524-540. [11] 耿姗姗, 韩春花, 徐珊珊, 等. ERA5海面气压和风速再分析资料在渤海和北黄海适用性分析[J]. 海洋通报, 2023, 42(2):159-168. GENG S S, HAN C H, XU S S, et al. Applicability analysis of the sea surface pressure and wind speed of ERA5 reanalysis data in the Bohai Sea and the northern Huanghai Sea[J]. Marine Science Bulletin, 2023, 42(2):159-168. [12] 国家海洋局. 海浪灾害风险评估和区划技术导则[EB/OL]. [2023-09-08].http://www.docin.com/p-1471348867.html. State Oceanic Administration. Guidelines for risk assessment and zoning of wave disaster[EB/OL]. [2023-09-08]. http://www.docin. com/p-1471348867.html. [13] 陈剑桥, 韩博, 杨清华, 等. 浙江东部海域沉船海难海浪灾害性特征分析[J]. 海洋预报, 2023, 40(1):28-38. CHEN J Q, HAN B, YANG Q H, et al. Analysis of the disastrous characteristics of waves for shipwrecks in the eastern waters of Zhejiang province[J]. Marine Forecasts, 2023, 40(1):28-38. [14] 刘文通. 波浪周期对海洋建筑物的影响[J]. 海岸工程, 1998, 17(3):1-5. LIU W T. The effect of wave period on coastal and offshore structures[J]. Coastal Engineering, 1998, 17(3):1-5. [15] 裴晔, 陶爱峰, 张义丰, 等. 东海E3海域低频涌浪生成机制研究[J]. 海洋湖沼通报, 2016(1):17-24. PEI Y, TAO A F, ZHANG Y F, et al. The generation mechanisms of low-frequency well in the E3 sea area of the East China Sea[J]. Transactions of Oceanology and Limnology, 2016(1):17-24. [16] 谢欣, 陶爱峰, 张尧, 等. 基于波高和周期双指标的福建海域海浪危险性分析[J]. 海洋通报, 2019, 38(2):167-172. XIE X, TAO A F, ZHANG Y, et al. Analysis of wave risk in Fujian offshore area based on double indicator considering both wave height and wave period[J]. Marine Science Bulletin, 2019, 38(2):167-172. [17] 过瑞康, 邓夕贵, 范骏, 等. 基于ERA-5的西非海域波浪时空分布特征分析[J]. 中国港湾建设, 2022, 42(6):1-6. GUO R K, DENG X G, FAN J, et al. Analysis of temporal and spatial distribution characteristics of ocean waves in West Africa based on ERA-5[J]. China Harbour Engineering, 2022, 42(6):1-6. [18] THOMPSON W C, NELSON A R, SEDIVY D G. Wave group anatomy of ocean wave spectra[C]//Proceedings of the 19th International Conference on Coastal Engineering. Houston:American Society of Civil Engineers, 1984:661-677. [19] SEMEDO A, SUŠELJ K, RUTGERSSON A, et al. A global view on the wind sea and swell climate and variability from ERA-40[J]. Journal of Climate, 2011, 24(5):1461-1479. [20] CHEN G, CHAPRON B, EZRATY R, et al. A global view of swell and wind sea climate in the ocean by satellite altimeter and scatterometer[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(11):1849-1859. [21] JIANG H Y, CHNE G. A global view on the swell and wind sea climate by the jason-1 mission:a revisit[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(8):1833-1841. [22] 国家市场监督管理总局, 国家标准化管理委员会. GB/T 42176-2022海浪等级[S]. 北京:中国标准出版社, 2022. State Administration for Market Regulation, Standardization Administration. GB/T 42176-2022 The grade of wave height[S]. Beijing:Standards Press of China, 2022. [23] 申华羽, 方艳莹, 涂小萍, 等. ECMWF细网格10 m风预报在浙江沿海的评估与订正[J]. 气象, 2020, 46(11):1485-1494. SHEN H Y, FANG Y Y, TU X P, et al. Verification of ECMWF 10 m wind forecast for coastal Zhejiang Province[J]. Meteorological Monthly, 2020, 46(11):1485-1494. [24] 吕劲文, 姚日升, 涂小萍, 等. 浙江省6—9月午后短时强降水空间分布特征分析[J]. 暴雨灾害, 2019, 38(4):320-328. LYU J W, YAO R S, TU X P, et al. Analysis on spatial distribution characteristics of afternoon flash heavy rain from June to September in Zhejiang[J]. Torrential Rain and Disasters, 2019, 38(4):320-328. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|