多源数据融合在台风登陆前后风速的识别应用 |
作者:方奎明1 谈志安2 陈莲3 李渊1 陆桥1 |
单位:1. 台州市气象局, 浙江 台州 318000; 2. 台州市路桥区气象局, 浙江 台州 318050; 3. 玉环市气象局, 浙江 台州 317600 |
关键词:多源数据 风场反演 风场融合 台风风场 风速识别 |
分类号:P457.8 |
|
出版年·卷·期(页码):2024·41·第五期(99-106) |
摘要:
|
基于Pydda反演算法、三次方程内插法及典型相关分析法,利用多普勒雷达径向速度反演风场、ERA5-Land再分析风场和气象自动站风场进行风场数据融合,并分析1909号超强台风“利奇马”登陆前后融合风场的特征。试验结果表明:融合风场结合了各类风场的独特优势,能够弥补高海拔地区观测资料缺乏的不足;融合风场既包含低层风场的大风速区特征,也包含反演风场中超强台风“利奇马”的北倾结构特征。融合风场通过低层风场的传导能够对下一时刻的地面大风区起到一定指示作用,结合地形可以进一步判断强降水发生的大致范围,有助于划定风雨灾害影响区域。 |
Based on Pydda inversion algorithm, cubic interpolation method and typical correlation analysis method, the wind field data are fused from Doppler radial velocity inversion wind field, ERA5-Land reanalysis wind field and automatic station wind field, and the characteristics of the fused wind field before and after the landfall of the super Typhoon "Lekima" (1909) are analyzed. The results show that the fused wind field with unique advantage of each wind source overcomes the deficiency of the lack of observational data at high altitudes, which performs well both for the large wind speed areas in the low-level atmosphere and the northdipping vertical structure of the super Typhoon "Lekima" (1909). The fusion wind field can provide some indications of the windy area on the ground at the next time step through analyzing the low-level wind field at current time step, and further predict approximate extent of heavy precipitation after combining the topography information which can be used to identify the impacting areas of wind and rain disasters. |
参考文献:
|
[1] 綦昕瑶, 高路. 不同地形条件下的台风灾害链致灾分析——以“利奇马”台风为例[J]. 福建师范大学学报(自然科学版), 2020, 36(5):74-83. QI X Y, GAO L. Analysis on typhoon disaster chain under different terrain conditions:a case study of typhoon Lekima in 2019[J]. Journal of Fujian Normal University (Natural Science Edition), 2020, 36(5):74-83. [2] 陈联寿, 丁一汇. 西太平洋台风概论[M]. 北京:科学出版社, 1979. CHEN L S, DING Y H. An introduction to typhoons in the Western Pacific[M]. Beijing:Science Press, 1979. [3] 高雅. HY-2卫星风场资料LAPS系统融合及其应用研究[D]. 南京:南京信息工程大学, 2015. GAO Y. Data fusion of HY-2 satellite sea surface wind data in LAPS and its application[D]. Nanjing:Nanjing University of Information Science and Technology, 2015. [4] 杨璐, 陈敏, 陈明轩, 等. 高时空分辨率三维风场在强对流天气临近预报中的融合应用研究[J]. 气象学报, 2019, 77(2):243-255. YANG L, CHEN M, CHEN M X, et al. Fusion of 3D high temporal and spatial resolution wind field and its application in nowcasting of severe convective weather[J]. Acta Meteorologica Sinica, 2019, 77(2):243-255. [5] 王子昕, 王咏青, 张静, 等. 多源数据融合在强对流天气中地面风场的识别应用[J]. 高原气象, 2022, 41(3):790-802. WANG Z X, WANG Y Q, ZHANG J, et al. Application of multisource data fusion in surface wind field identification in severe convective weather[J]. Plateau Meteorology, 2022, 41(3):790-802. [6] 唐焕丽, 姚琴, 吕晓莹, 等. 多源卫星融合的广东海域海面风场特征[J]. 遥感信息, 2020, 35(1):117-122. TANG H L, YAO Q, LYU X Y, et al. Characteristics of sea surface wind field in Guangdong sea area with multi-source satellite fusion [J]. Remote Sensing Information, 2020, 35(1):117-122. [7] 潘旸, 谷军霞, 徐宾, 等. 多源降水数据融合研究及应用进展[J]. 气象科技进展, 2018, 8(1):143-152. PAN Y, GU J X, XU B, et al. Advances in multi-source precipitation merging research[J]. Advances in Meteorological Science and Technology, 2018, 8(1):143-152. [8] 徐宾, 宇婧婧, 张雷, 等. 全球海表温度融合研究进展[J]. 气象科技进展, 2018, 8(1):164-170. XU B, YU J J, ZHANG L, et al. Research progress of global sea surface temperature fusion[J]. Advances in Meteorological Science and Technology, 2018, 8(1):164-170. [9] 许遐祯, 高健, 张康宇, 等. 基于多源数据的中国近海风场融合方法研究[J]. 杭州师范大学学报(自然科学版), 2016, 15(3):325-330. XU X Z, GAO J, ZHANG K Y, et al. Fusion method of China's offshore wind field based on multi-source data[J]. Journal of Hangzhou Normal University (Natural Science Edition), 2016, 15(3):325-330. [10] 林溢园, 邹巨洪, 林明森, 等. 多源星载微波散射计海面风场信息融合研究[J]. 遥感技术与应用, 2017, 32(1):126-132. LIN Y Y, ZOU J H, LIN M S, et al. Study on the ocean surface wind vector fusion based on muti-source spaceborne microwave scatterometer data[J]. Remote Sensing Technology and Application, 2017, 32(1):126-132. [11] 柳婧. 基于最优插值方法的中国近海海面风场资料融合研究[D]. 北京:国家海洋环境预报中心, 2018. LIU J. Research on data fusion of sea surface wind in China's offshore based on optimal interpolation method[D]. Beijing:National Marine Environmental Forecasting Center, 2018. [12] JACKSON R, COLLIS S, LANG T, et al. PyDDA:a pythonic direct data assimilation framework for wind retrievals[J]. Journal of Open Research Software, 2020, 8(3):20. [13] VESTERGAARD J S, NIELSEN A A. Automated invariant alignment to improve canonical variates in image fusion of satellite and weather radar data[J]. Journal of Applied Meteorology and Climatology, 2013, 52(3):701-709. [14] 顾高升, 葛洪伟, 周梦璇. 利用特征信息的加权典型相关分析算法[J]. 重庆邮电大学学报(自然科学版), 2018, 30(2):280-288. GU G S, GE H W, ZHOU M X. Weighted canonical correlation analysis with feature information[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2018, 30(2):280-288. [15] 黄元森. 2006年闽北二次台风降水的异同特征分析[C]//2006年度华东区域台风预报服务技术交流会. 上海:中国气象局, 2006. HUANG Y S. Analysis of differences and similarities in the precipitation of two typhoons in Northern Fujian in 2006[C]//East China Regional Typhoon Forecasting Service Technical Exchange Conference. Shanghai:China Meteorological Administration, 2006. [16] 林小红, 刘爱鸣, 刘通易, 等. 2013年“苏力”与“潭美”相似路径台风大暴雨落区差异分析[J]. 热带气象学报, 2015, 31(4):517-525. LIN X H, LIU A M, LIU T Y, et al. An analysis on different heavy rain areas with two typhoons Trami and Soulik with similar tracks during 2013[J]. Journal of Tropical Meteorology, 2015, 31(4):517-525. [17] 黄莉, 黄增俊, 白龙, 等. 台风“海燕”(2013)暴雨非对称结构及中尺度特征分析[J]. 热带气象学报, 2017, 33(3):334-344. HUANG L, HUANG Z J, BAI L, et al. The analysis of the asymmetric structure and the mesolscale characteristics of typhoon Haiyan(2013)[J]. Journal of Tropical Meteorology, 2017, 33(3):334-344. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|