首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
基于SCHISM-CoSiNE模拟的2021年珠江口海域海表浮游植物分布
作者:张昕1 2  高姗1 2  季轩梁1 2  杨洪桥3  朱学明3  郑静静1 2 
单位:1. 国家海洋环境预报中心, 北京 100081;
2. 自然资源部海洋灾害预报技术重点实验室, 北京 100081;
3. 南方海洋科学与工程广东省实验室珠海), 广东 珠海 519080
关键词:珠江口 三维斜压水动力-生态耦合模型 海洋生物地球化学 数值模拟 
分类号:P731.2
出版年·卷·期(页码):2024·41·第六期(89-102)
摘要:
为了探索弱径流年的浮游植物分布特征,基于非结构网格半隐式跨尺度海洋模式建立珠江口的三维斜压水动力-生态耦合模型,基于模型结果讨论2021年弱径流条件下珠江口海域海表状态变量的分布,探索关键海洋要素与逐日径流量的相关性空间分布,对海表叶绿素a进行经验正交函数分解。结果表明:2021年6月下旬—8月的叶绿素a浓度较多年平均值存在负异常;叶绿素a浓度的分布在近海和远海存在相反相位,丰水期近海叶绿素a为增强态势,枯水期减弱,外海则相反;2021 年与多年均值存在较大差异的原因在于第三模态 8 月、9 月时间系数相反。整体而言,2021年浮游植物分布规律与常年较一致。
To explore the distribution of phytoplankton in weak runoff condition, a three-dimensional baroclinic hydrodynamic-ecological coupled model (Semi-implicit Cross-scale Hydroscience Integrated System Model coupled with Carbon, Silicon, Nitrogen Ecosystem, SCHISM-CoSiNE) for the Pearl River Estuary based on an unstructured grid semi-implicit cross-scale ocean model has been established. The distribution of sea surface state variables in the Pearl River Estuary under weak runoff condition in 2021 has been discussed based on the model results. We explore the spatial correlation between key marine factors and daily runoff, and conduct an Empirical Orthogonal Function (EOF) analysis of sea surface chlorophyll-a. The results show that chlorophyll-a concentration from late June to August exhibits negative anomalies compared to the multi-year average. A contrasting phase of chlorophyll-a concentration distribution is observed offshore and in the open sea. Offshore chlorophyll-a increases during the wet season and decreases during the dry season, opposite change has been observed in the open sea. Notably, the significant difference between the 2021 results and the multi-year mean focuses on the opposite time coefficient of the third EOF mode in August and September. Overall, the phytoplankton distribution in 2021 aligns with the normal pattern.
参考文献:
[1] 赵焕庭. 珠江河口的水文和泥沙特征[J]. 热带地理, 1989, 9(3): 201-212. ZHAO H T. Hydrological and sedimentary characteristics of the Pearl River estuary[J]. Tropical Geography, 1989, 9(3): 201-212.
[2] 黄畅, 王永红, 杨清书, 等. 珠江三角洲河网流量的时空变化及影响因素[J]. 中国海洋大学学报(自然科学版), 2022, 52(5): 97-106. HUANG C, WANG Y H, YANG Q S, et al. Spatiotemporal variation of discharge and its influencing factors in the Pearl River delta network Area[J]. Periodical of Ocean University of China, 2022, 52(5): 97-106.
[3] YIN K D, HARRISON P J. Nitrogen over enrichment in subtropical Pearl River estuarine coastal waters: possible causes and consequences[J]. Continental Shelf Research, 2008, 28(12): 1435-1442.
[4] LAI Z G, YIN K D. Physical-biological coupling induced aggregation mechanism for the formation of high biomass red tides in low nutrient waters[J]. Harmful Algae, 2014, 31: 66-75.
[5] WANG S F, TANG D L, HE F L, et al. Occurrences of harmful algal blooms (HABs) associated with ocean environments in the South China Sea[J]. Hydrobiologia, 2008, 596(1): 79-93.
[6] 张伟, 孙健, 聂红涛, 等. 珠江口及毗邻海域营养盐对浮游植物生长的影响[J]. 生态学报, 2015, 35(12): 4034-4044. ZHANG W, SUN J, NIE H T, et al. Seasonal and spatial variations of nutrient and the response of phytoplankton in PRE and Adjacent Sea Areas[J]. Acta Ecologica Sinica, 2015, 35(12): 4034-4044.
[7] HARRISON P J, YIN K D, LEE J H W, et al. Physical–biological coupling in the Pearl River Estuary[J]. Continental Shelf Research, 2008, 28(12): 1405-1415.
[8] 马奔, 赵辉. 夏季珠江口叶绿素a和营养盐分布特征及其与环境因子的关系[J]. 海洋环境科学, 2021, 40(5): 707-716. MA B, ZHAO H. Distribution characteristics of chlorophyll a and nutrients in the Pearl River Estuary in summer and their relationship with environmental factors[J]. Marine Environmental Science, 2021, 40(5): 707-716.
[9] GAN J P, LU Z M, DAI M H, et al. Biological response to intensified upwelling and to a river plume in the northeastern South China Sea: a modeling study[J]. Journal of Geophysical Research: Oceans, 2010, 115(C9): C09001.
[10] LI X F, HU Z Z, TSENG Y H, et al. A historical perspective of the La Niña Event in 2020/2021[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(7): e2021JD035546.
[11] SUN B, WANG H J, LI H X, et al. A long-lasting precipitation deficit in south china during autumn-winter 2020/2021: combined effect of ENSO and arctic sea ice[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(6): e2021JD035584.
[12] FENG W J, LEUNG M Y T, WANG D X, et al. An extreme drought over South China in 2020/ 21 concurrent with an unprecedented warm Northwest Pacific and La Niña[J]. Advances in Atmospheric Sciences, 2022, 39(10): 1637-1649.
[13] ZHANG Y J, ATELJEVICH E, YU H C, et al. A new vertical coordinate system for a 3D unstructured-grid model[J]. Ocean Modelling, 2015, 85: 16-31.
[14] ZHANG Y J, YE F, STANEV E V, et al. Seamless cross-scale modeling with SCHISM[J]. Ocean Modelling, 2016, 102: 64-81.
[15] CHAI F, DUGDALE R C, PENG T H, et al. One-dimensional ecosystem model of the equatorial Pacific upwelling system. Part I: model development and silicon and nitrogen cycle[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2002, 49(13-14): 2713-2745.
[16] XIU P, CHAI F. Spatial and temporal variability in phytoplankton carbon, chlorophyll, and nitrogen in the North Pacific[J]. Journal of Geophysical Research: Oceans, 2012, 117(C11): C11023.
[17] LIU Q Q, CHAI F, DUGDALE R, et al. San Francisco Bay nutrients and plankton dynamics as simulated by a coupled hydrodynamic-ecosystem model[J]. Continental Shelf Research, 2018, 161: 29-48.
[18] 杨洪桥. 径流对珠江口海域环流影响的数值模拟研究[D]. 济南: 山东大学, 2023. YANG H Q. Numerical simulation study of the circulation influenced by runoff in the Pearl River Estuary[D]. Ji'nan: Shandong University, 2023.
[19] 朱子瑞, 张文静, 朱首贤, 等. 南海SCHISM模式不同垂向坐标研究[J]. 海洋通报, 2022, 41(2): 147-155. ZHU Z R, ZHANG W J, ZHU S X, et al. Contrastive study on different vertical coordinate settings of SCHISM model in the Nanhai Sea[J]. Marine Science Bulletin, 2022, 41(2): 147-155.
[20] ZHU X M, WANG H, LIU G M, et al. Comparison and validation of global and regional ocean forecasting systems for the South China Sea[J]. Natural Hazards and Earth System Sciences, 2016, 16(7): 1639-1655.
[21] ZHU X M, ZU Z Q, REN S H, et al. Improvements in the regional South China Sea Operational Oceanography Forecasting System (SCSOFSv2)[J]. Geoscientific Model Development, 2022, 15(3): 995-1015.
[22] GUO S J, ZHU X M, JI X L, et al. Oceanic and ecological response to native Typhoons Cempaka and Lupit (2021) along the northern South China Sea continental shelf: comparison and evaluation of global and regional Operational Oceanography Forecasting Systems[J]. Frontiers in Marine Science, 2023, 10: 1175263.
[23] ZHANG M, ZHU X, JI X, et al. Controlling factor analysis of oceanic surface pCO2 in the South China Sea using a threedimensional high-resolution biogeochemical model[J]. Frontiers in Marine Science, 2023, 10: 1155979.
[24] 虞旭日, 汪景庸. 三维数值模式用于海底摩擦系数的研究[J]. 海洋科学, 1991, 15(6): 57-60. YU X R, WANG J Y. Study on sea-bottom friction coefficient by application of three-dimensional model[J]. Marine Sciences, 1991, 15(6): 57-60.
[25] YE F, ZHANG Y L J, PRIEDRICHS M A M, et al. A 3D Crossscale, baroclinic model with implicit vertical transport for the Upper Chesapeake Bay and its tributaries[J]. Ocean Modelling, 2016, 107: 82-96.
[26] WANG Z G, CHAI F, DUGDALE R, et al. The interannual variabilities of chlorophyll and nutrients in San Francisco Bay: a modeling study[J]. Ocean Dynamics, 2020, 70(8): 1169-1186.
[27] WANG Z G, CHAI F, BRADY D. Development of a new sediment flux model-application in Chesapeake Bay[J]. Progress in Oceanography, 2020, 185: 102332.
[28] 苏纪兰, 袁业立. 中国近海水文[M]. 北京: 海洋出版社, 2005. SU J L, YUAN Y L. Coastal hydrology in China[M]. Beijing: China Ocean Press, 2005.
[29] LIU K K, CHEN Y J, TSENG C M, et al. The significance of phytoplankton photo-adaptation and benthic-pelagic coupling to primary production in the South China Sea: Observations and numerical investigations[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2007, 54(14-15): 1546-1574.
[30] 庞海龙. 珠江冲淡水扩散路径分析[D]. 青岛: 中国海洋大学, 2006. PANG H L. Analysis of diffuse route of the Zhujiang river diluted water[D]. Qingdao: Ocean University of China, 2006.
[31] LU Z M, GAN J P, CHEUNG Y Y, et al. Biological response to wind-driven upwelling and river plume in the Northeastern South China Sea: a modeling study[J]. Journal of Geophysical Research, 2008, 115: C09001.
[32] 罗辰奕. 渤黄海ROMS-CoSiNE模型关键生态参数的优化与应用[D]. 天津:天津大学, 2018. LUO C Y. Optimization and application of key parameters in a coupled ROMS-CoSiNE model of the Bohai and Yellow seas[D]. Tianjin: Tianjin University, 2018.
[33] 董燕红, 蔡建东, 钱宏林. 珠江口海域营养盐比及与浮游植物的关系[J]. 海洋通报, 2009, 28(1): 3-10. DONG Y H, CAI J D, QIAN H L. Nutrient ratios and its relationship with phytoplankton in the pearl river estuary[J]. Marine Science Bulletin, 2009, 28(1): 3-10.
[34] FANG W W, GENG B X, XIU P. Typhoon effects on the vertical chlorophyll distribution on the northern shelf of the South China Sea[J]. Journal of Geophysical Research: Oceans, 2022, 127(12): e2022JC019350.
[35] 旷芳芳, 江毓武. 夏季珠江口悬浮泥沙与营养盐对生物生长影响的数模分析[J]. 厦门大学学报(自然科学版), 2011, 50(3): 586-592. KUANG F F, JIANG Y W. Numerical study of the effect of suspended sediment and nutrient on biological growth in Pearl River Estuary in summer[J]. Journal of Xiamen University (Natural Science), 2011, 50(3): 586-592.
[36] PEIERLS B L, HALL N S, PAERL H W. Non-monotonic responses of phytoplankton biomass accumulation to hydrologic variability: a comparison of two coastal plain North Carolina estuaries[J]. Estuaries and Coasts, 2012, 35(6): 1376-1392.
[37] YANG Y, GUAN W B, DELEERSNIJDER E, et al. Hydrodynamic and sediment transport modelling in the Pearl River Estuary and adjacent Chinese coastal zone during Typhoon Mangkhut[J]. Continental Shelf Research, 2022, 233: 104645.
[38] NORTH G R, BELL T L, CAHALAN R F, et al. Sampling errors in the estimation of empirical orthogonal functions[J]. Monthly Weather Review, 1982, 110(7): 699-706.
[39] CHEN Y F L, CHEN H Y. Seasonal dynamics of primary and new production in the northern South China Sea: the significance of river discharge and nutrient advection[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2006, 53(6): 971-986.
[40] 许泽婷, 李适宇, 胡嘉镗, 等. 夏季南海北部浮游植物对上升流与羽状流的响应[J]. 热带海洋学报, 2018, 37(6): 92-103. XU Z T, LI S Y, HU J T, et al. Summer phytoplankton responses to upwelling and river plume in northern South China Sea[J]. Journal of Tropical Oceanography, 2018, 37(6): 92-103.
[41] WEI X, ZHAN H G, NI P T, et al. A model study of the effects of river discharges and winds on hypoxia in summer in the Pearl River Estuary[J]. Marine Pollution Bulletin, 2016, 113(1-2): 414-427.
[42] GAN J P, LU Z M, CHEUNG A, et al. Assessing ecosystem response to phosphorus and nitrogen limitation in the Pearl River plume using the Regional Ocean Modeling System (ROMS) [J]. Journal of Geophysical Research: Oceans, 2014, 119(12): 8858-8877.
[43] 冉祥滨, 韦钦胜, 于志刚. 中国近海营养盐结构失衡与磷消耗问题及其生态环境效应的研究进展[J]. 海洋科学, 2023, 47(8): 75-89. RAN X B, WEI Q S, YU Z G. Stoichiometric imbalance in the rates of nutrient and phos-phorus depletion in coastal China with implications for the ecological environment[J]. Marine Sciences, 2023, 47(8): 75-89.
[44] MALONE T C, NEWTON A. The globalization of cultural eutrophication in the coastal ocean: causes and consequences[J]. Frontiers in Marine Science, 2020, 7: 670.
[45] CHEUNG Y Y, CHEUNG S, MAK J, et al. Distinct interaction effects of warming and anthropogenic input on diatoms and dinoflagellates in an urbanized estuarine ecosystem[J]. Global Change Biology, 2021, 27(15): 3463-3473.
[46] WANG Z G, CHAI F, XUE H J, et al. Light regulation of phytoplankton growth in San Francisco bay studied using a 3D sediment transport model[J]. Frontiers in Marine Science, 2021, 8: 633707.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号 电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn
本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626