首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
基于LSTM的北极海冰范围多步预测策略研究
作者:王漫漫1 2 3 4  邹斌2 3  石立坚2 3  曾韬2 3  张颖2 3  路敦旺1 2 3 
单位:1. 国家海洋环境预报中心, 北京 100081;
2. 国家卫星海洋应用中心, 北京 100081;
3. 自然资源部 空间海洋遥感与应用研究重点实验室, 北京 100081;
4. 国家海洋环境预报中心 自然资源部海洋灾害预报技术重点实验室, 北京 100081
关键词:北极海冰范围 长短期记忆网络 多步预测策略 Seq2Seq策略 
分类号:P731.32
出版年·卷·期(页码):2025·42·第一期(11-22)
摘要:
已有研究对北极海冰范围开展单步预测,而多步预测及其策略研究有待进一步探索。使用1979—2022年的北极月平均海冰范围数据,采用长短期记忆网络(LSTM)深度学习方法,结合递归(Recursive)、直接(Direct)、多输入多输出(MIMO)和Seq2Seq策略实现对未来12个月北极海冰范围的多步预测。结果表明:24个月为模型的最佳输入长度;与另外3种基本的多步预测策略相比,Seq2Seq策略对12个月北极海冰范围预测的准确性更好,均方根误差为3.30×105 km2
While previous researches have primarily focused on single-step prediction of Arctic sea ice extent, multi-step prediction and strategy are yet to be explored. This study utilizes monthly average Arctic sea ice extent data spanning from 1978 to 2022 and employs Long Short-Term Memory to implement multi-step predictions of Arctic sea ice extent for the next 12 months using four strategies: Recursive, Direct, Multi-input Multi-output, and Seq2Seq. The results show that a model input length of 24 months performs optimally. When compared to the other three basic multi-step prediction strategies, the Seq2Seq strategy demonstrates superior accuracy in forecasting Arctic sea ice extent over the next 12 months, with an root mean square error of 0.33 million square kilometers.
参考文献:
[1] RANTANEN M, KARPECHKO A Y, LIPPONEN A, et al. The Arctic has warmed nearly four times faster than the globe since 1979[J]. Communications Earth & Environment, 2022, 3(1): 168.
[2] DAVY R, GRIEWANK P. Arctic amplification has already peaked [J]. Environmental Research Letters, 2023, 18(8): 084003.
[3] DELHAYE S, MASSONNET F, FICHEFET T, et al. Dominant role of early winter Barents-Kara sea ice extent anomalies in subsequent atmospheric circulation changes in CMIP6 models[J]. Climate Dynamics, 2024, 62(4): 2755-2778.
[4] 孙晓宇, 孙启振, 沈辉, 等. 1979—2022年北极海冰范围变化特征及趋势分析[J]. 海洋预报, 2023, 40(5): 49-55. SUN X Y, SUN Q Z, SHEN H, et al. Analysis of characteristics and trends of Arctic sea ice extent changes from 1979 to 2022[J]. Marine Forecasts, 2023, 40(5): 49-55.
[5] SUN X Y, LV T T, SUN Q Z, et al. Analysis of spatiotemporal variations and influencing factors of sea ice extent in the Arctic and Antarctic[J]. Remote Sensing, 2023, 15(23): 5563.
[6] JAHN A, HOLLAND M M, KAY J E. Projections of an ice-free Arctic Ocean[J]. Nature Reviews Earth & Environment, 2024, 5(3): 164-176.
[7] GAO Y Q, SUN J Q, LI F, et al. Arctic sea ice and Eurasian climate: a review[J]. Advances in Atmospheric Sciences, 2015, 32(1): 92-114.
[8] CHRIPKO S, MSADEK R, SANCHEZ-GOMEZ E, et al. Impact of reduced Arctic sea ice on Northern Hemisphere climate and weather in autumn and winter[J]. Journal of Climate, 2021, 34(14): 5847-5867.
[9] SÉVELLEC F, FEDOROV A V, LIU W. Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation[J]. Nature Climate Change, 2017, 7(8): 604-610.
[10] ESAU I, PETTERSSON L H, CANCET M, et al. The Arctic amplification and its impact: a synthesis through satellite observations[J]. Remote Sensing, 2023, 15(5): 1354.
[11] 刘泉宏, 张韧, 汪杨骏, 等. 深度学习方法在北极海冰预报中的应用[J]. 大气科学学报, 2022, 45(1): 14-21. LIU Q H, ZHANG R, WANG Y J, et al. Application of deep learning methods to Arctic sea ice prediction[J]. Transactions of Atmospheric Sciences, 2022, 45(1): 14-21.
[12] 刘骥平, 雷瑞波, 宋米荣, 等. 适应极地快速变化海冰模式的研发与挑战[J]. 大气科学学报, 2021, 44(1): 12-25. LIU J P, LEI R B, SONG M R, et al. Development and challenge of sea ice model adapting to rapid polar sea ice changes[J]. Transactions of Atmospheric Sciences, 2021, 44(1): 12-25.
[13] WANG L, YUAN X J, TING M F, et al. Predicting summer Arctic sea ice concentration intraseasonal variability using a vector autoregressive model[J]. Journal of Climate, 2016, 29(4): 1529-1543.
[14] CHI J, KIM H C. Prediction of Arctic sea ice concentration using a fully data driven deep neural network[J]. Remote Sensing, 2017, 9(12): 1305.
[15] ALI S, HUANG Y Y, HUANG X, et al. Sea ice forecasting using attention-based ensemble LSTM[EB/OL]. arXiv: 2108.00853, (2022-02-08)[2023-10-11]. http://arxiv.org/abs/2108.00853.
[16] KIM E, KRUSE P, LAMA S, et al. Multi-task deep learning based spatiotemporal Arctic sea ice forecasting[C]//2021 IEEE International Conference on Big Data (Big Data). Orlando: IEEE, 2021: 1847-1857.
[17] National Snow and Ice Data Center. Sea ice concentrations from nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, Version 2[DS/OL]. [2023-10-25]. https://nsidc.org/data/nsidc-0051/versions/2.
[18] Climate Data Store. Seasonal forecast monthly statistics on single levels[DS/OL]. 2018[2024-03-26]. https://cds.climate.copernicus.eu/doi/10.24381/cds.68dd14c3.
[19] HOCHREITER S, SCHMIDHUBER J. Long short-term memory [J]. Neural Computation, 1997, 9(8): 1735-1780.
[20] Understanding LSTM networks[EB/OL]. Colah’s Blog, 2015[2024-12-26]. https://colah.github.io/posts/2015-08-Understanding-LSTMs/.
[21] TAIEB S B, BONTEMPI G, ATIYA A F, et al. A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition[J]. Expert Systems with Applications, 2012, 39(8): 7067-7083.
[22] SORJAMAA A, HAO J, REYHANI N, et al. Methodology for long-term prediction of time series[J]. Neurocomputing, 2007, 70(16-18): 2861-2869.
[23] HAMZAÇEBI C, AKAY D, KUTAY F. Comparison of direct and iterative artificial neural network forecast approaches in multiperiodic time series forecasting[J]. Expert Systems with Applications, 2009, 36(2): 3839-3844.
[24] TAIEB S B, SORJAMAA A, BONTEMPI G. Multiple-output modeling for multi-step-ahead time series forecasting[J]. Neurocomputing, 2010, 73(10-12): 1950-1957.
[25] BONTEMPI G. Long term time series prediction with multi-input multi-output local learning[C]//Proceedings of the 2nd European Symposium on Time Series Prediction (TSP). Helsinki: Helsinki University of Technology, Department of Information and Computer Science, 2008: 145-154.
[26] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[EB/OL]. arXiv: 1409.3215, (2014-12-14)[2023-10-11]. http://arxiv.org/abs/1409.3215.
[27] 王涛, 张伟, 贾宇欣, 等. 基于Seq2Seq模型的港口进出口货物量预测[J]. 计算机系统应用, 2020, 29(3): 132-139. WANG T, ZHANG W, JIA Y X, et al. Prediction on import and export goods volume of ports based on Seq2Seq model[J]. Computer Systems & Applications, 2020, 29(3): 132-139.
[28] KIM Y J, KIM H C, HAN D, et al. Prediction of monthly Arctic sea ice concentrations using satellite and reanalysis data based on convolutional neural networks[J]. The Cryosphere, 2020, 14(3): 1083-1104.
[29] CHI J, BAE J, KWON Y J. Two-stream convolutional long-and short-term memory model using perceptual loss for sequence-tosequence Arctic sea ice prediction[J]. Remote Sensing, 2021, 13(17): 3413.
[30] Sea Ice Prediction Network. Sea ice outlook[EB/OL]. [2024-12-26]. https://www.arcus.org/sipn/sea-ice-outlook.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号 电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn
本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626