摘要:
|
使用美国冰雪中心发布的海冰密集度数据集,对1979-2022年北极区域海冰密集度数据进行时空分析;提出基于Dijkstra最短路径算法的通航窗口改进算法,计算并分析了东北航道的通航窗口,确定了通航航道及周期;进一步分析并确定了影响东北航道通航性的关键区域。研究结果表明:1979-2022年北极区域海冰密集度持续减少,年减少约0.18%;1979-2022年间共有25年存在通航窗口,平均通航窗口起始多在7月下旬—8月上旬,结束多在10月上中旬,周期变化较大;影响东北航道通航期的关键区域为中段海域。 |
This paper used the sea ice concentration data set released by the National Snow and Ice Data Center to conduct spatiotemporal analysis of sea ice concentration data in the Arctic region from 1979 to 2022; An improved navigation window algorithm based on Dijkstra shortest path algorithm was proposed. The navigation window of the Northeast Passage was calculated, and the navigation channel and period were determined. The key areas affecting the navigability of the Northeast Passage are further analyzed. The results show that: the annual average sea ice concentration in the Arctic region decreased by about 0.18% per year. There were 25 years of navigable windows during 1979—2022. The average start period of navigable windows was late July to early August, and the end period of navigable windows was early and middle October. The cycle of navigable windows changed largely. The key area affecting the navigation period of the Northeast Passage is the middle section. |
参考文献:
|
[1] RANTANEN M, KARPECHKO A Y, LIPPONEN A, et al. The Arctic has warmed nearly four times faster than the globe since 1979[J]. Communications Earth & Environment, 2022, 3(1): 168. [2] CAVALIERI D J, PARKINSON C L. Arctic sea ice variability and trends, 1979-2010[J]. The Cryosphere, 2012, 6(4): 881-889. [3] ONARHEIM I H, ELDEVIK T, SMEDSRUD L H, et al. Seasonal and regional manifestation of Arctic sea ice loss[J]. Journal of Climate, 2018, 31(12): 4917-4932. [4] ALI A, DUNLOP P, COLEMAN S, et al. Glacier area changes in the Arctic and high latitudes using satellite remote sensing[J]. Journal of Maps, 2023, 19(1): 1-7. [5] OVERLAND J E, WANG M Y. When will the summer Arctic be nearly sea ice free? [J]. Geophysical Research Letters, 2013, 40(10): 2097-2101. [6] SWEENEY A J, FU Q, PO-CHEDLEY S, et al. Internal variability increased Arctic amplification during 1980—2022[J]. Geophysical Research Letters, 2023, 50(24): e2023GL106060. [7] 耿家营, 管磊, 吴凡, 等. 基于卫星数据的北极海冰变化分析[J]. 海洋技术, 2014, 33(2): 8-13. GENG J Y, GUAN L, WU F, et al. Analysis on the variation of Arctic sea ice using satellite data[J]. Journal of Ocean Technology, 2014, 33(2): 8-13. [8] FARRÉA B, STEPHENSON S R, CHEN L L, et al. Commercial Arctic shipping through the Northeast Passage: routes, resources, governance, technology, and infrastructure[J]. Polar Geography, 2014, 37(4): 298-324. [9] 马龙, 李振华, 陈冠文, 等. 基于“永盛轮”航线冰情分析的北极东北航线通航性研究[J]. 极地研究, 2018, 30(2): 173-185. MA L, LI Z H, CHEN G W, et al. Research on the navigability of the Arctic Northeast Route based on sea ice conditions during the passage of M/V Yong Sheng[J]. Chinese Journal of Polar Research, 2018, 30(2): 173-185. [10] JI M, LIU G C, HE Y W, et al. Analysis of sea ice timing and navigability along the Arctic Northeast Passage from 2000 to 2019[J]. Journal of Marine Science and Engineering, 2021, 9(7): 728. [11] 李振华. 基于冰情分析的北极东北航道通航条件研究[D]. 大连: 大连海事大学, 2017. LI Z H. Research on the navigability of the Arctic Northeast Passage based on sea ice conditions[D]. Dalian: Dalian Maritime University, 2017. [12] 季青, 董江, 庞小平, 等. 北极东北航道夏季海冰冰情与适航性分析[J]. 船舶力学, 2021, 25(8): 991-1000. JI Q, DONG J, PENG X P, et al. Analysis of sea ice conditions and navigability of Arctic Northeast Passage in summer[J]. Journal of Ship Mechanics, 2021, 25(8): 991-1000. [13] 马龙, 王加跃, 刘星河, 等. 北极东北航道通航窗口研究[J]. 海洋预报, 2018, 35(1): 52-59. MA L, WANG J Y, LIU X H, et al. Research in navigable windows of the Northwest Passage[J]. Marine Forecasts, 2018, 35(1): 52-59. [14] 王辉, 安磊, 马龙, 等. 基于POLARIS的北极东北航道通航窗口研究[J]. 中国航海, 2022, 45(4): 23-29. WANG H, AN L, MA L, et al. Study on navigable window navigating through Arctic Northeast Passage based on POLARIS [J]. Navigation of China, 2022, 45(4): 23-29. [15] CHEN J L, KANG S C, WU A D, et al. Accessibility in key areas of the Arctic in the 21st mid-century[J]. Advances in Climate Change Research, 2023, 14(6): 896-903. [16] CHEN J L, KANG S C, WU A D, et al. Impacts of 1.5℃ global warming on hydrological conditions of navigation along the Northern Sea Route and Northwest Passage[J]. Advances in Climate Change Research, 2023, 14(6): 904-912. [17] MAHMOUD M R, ROUSHDI M, ABOELKHEAR M. Potential benefits of climate change on navigation in the Northern Sea Route by 2050[J]. Scientific Reports, 2024, 14(1): 2771. [18] 刘森, 邹斌, 石立坚, 等. 基于FY-3C微波辐射计数据的极区海冰密集度反演方法研究[J]. 海洋学报, 2020, 42(1): 113-122. LIU S, ZOU B, SHI L J, et al. Polar sea ice concentration retrieval based on FY-3C microwave radiation imager data[J]. Haiyang Xuebao, 2020, 42(1): 113-122. [19] 王蔓蔓. 1979—2017年北极航道冰情变化研究[D]. 南京: 南京大学, 2018. WANG M M. Research on sea ice condition of Arctic Passage in 1979—2017[D]. Nanjing: Nanjing University, 2018. [20] 陈诗怡, 曹云锋, 惠凤鸣, 等. 基于遥感观测的2010~2017年秋季北极东北航道通航能力时空变化[J]. 科学通报, 2019, 64(14): 1515-1525. CHEN S Y, CAO Y F, HUI F M, et al. Observed spatial-temporal changes in the autumn navigability of the Arctic Northeast Route from 2010 to 2017[J]. Chinese Science Bulletin, 2019, 64(14): 1515-1525. [21] CAVALIERI D J, GLOERSEN P, CAMPBELL W J. Determination of sea ice parameters with the NIMBUS 7 SMMR[J]. Journal of Geophysical Research: Atmospheres, 1984, 89(D4): 5355-5369. [22] 曹云锋, 梁顺林. 北极地区快速升温的驱动机制研究进展[J]. 科学通报, 2018, 63(26): 2757-2771. CAO Y F, LIANG S L. Recent advances in driving mechanisms of the Arctic amplification: a review[J]. Chinese Science Bulletin, 2018, 63(26): 2757-2771. [23] SHIBATA H, IZUMIYAMA K, TATEYAMA K, et al. Sea-ice coverage variability on the Northern Sea Routes, 1980-2011[J]. Annals of Glaciology, 2013, 54(62): 139-148. [24] 吴展开. 基于遥感数据的极地海冰时空变化研究[D]. 郑州: 河南工业大学, 2020. WU Z K. Study on temporal and spatial variation of polar sea ice based on remote sensing data[D]. Zhengzhou: Henan University of Technology, 2020. [25] 李新情, 慈天宇, 罗斯瀚, 等. 北极东北航道维利基茨基海峡海冰时空变化及适航性分析[J]. 极地研究, 2015, 27(3): 282-288. LI X Q, CI T Y, LUO S H, et al. Spatio-temporal variations of sea ice and navigability in the Arctic Vilkitsky Strait[J]. Chinese Journal of Polar Research, 2015, 27(3): 282-288. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|