首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
基于AIS数据的北印度洋渔船时空活动特征分析
作者:刘明慧1 2  蔡文博1  吴彬锋1 
单位:1. 国家海洋环境预报中心, 北京 100081;
2. 国家海洋环境预报中心 自然资源部海洋灾害预报技术重点实验室, 北京 100081
关键词:海量数据 统一时空 作业时间 渔场推测 航道推测 
分类号:P715;P724
出版年·卷·期(页码):2025·42·第一期(48-55)
摘要:
针对海量的分钟级数据,在区域划分上参考中国近海渔区网格划分方法,添加时间要素,在北印度洋区域(48.0°~116.5°E,28.5°N~26.5°S)以统一的时空要素建立网格并作为基础统计单元。以此为基础,统计渔船分布面积和作业时间,并通过几何化处理绘制了时空分布热力图进行分析。结果表明:渔船的分布面积、活动密集程度与时间变量间存在相关性;存在一种划分方式,使得频次分布呈规律性且具备一定的结构特征,该结构特征较稳定,不随时间推移而变化。此外,推测了4个大洋渔场和4条航道的大致地理位置。
For massive minute level data, referring to the grid of China's offshore fishing areas in regional division, time element is added to establish a grid in the northern Indian Ocean region (48.0°~116.5°E, 28.5°N~26.5°S) as basic statistical unit. Based on the statistical unit, this study analyzes the distribution area, calculates operation time, and geometrically draws spatiotemporal distribution heat maps. Results show that there is a correlation between the distribution area of fishing vessels, the frequency of activity density, and time variables. There is a division method that makes the frequency distribution regular with a relative stable time-invariant structural characteristic. In addition, the approximate geographical locations of four oceanic fishing fields and four waterways are also speculated.
参考文献:
[1] 应急管理部-教育部减灾与应急管理研究院, 北京师范大学国 家安全与应急管理学院, 应急管理部国家减灾中心, 红十字会与红新月会国际联合会. 全球自然灾害评估报告[R]. 北京: 应急管理部-教育部减灾与应急管理研究院, 北京师范大学国家安全与应急管理学院, 应急管理部国家减灾中心, 红十字会与红新月会国际联合会, 2019-2022. Academy of Disaster Reduction and Emergency Management Ministry of Emergency Management & Ministry of Education (ADREM), Beijing Normal University School of National Safety and Emergency Management, National Disaster Reduction Center of China, International Federation of Red Cross and Red Crescent Societies, IFRC. Global natural disaster assessment report[R]. Beijing: Academy of Disaster Reduction and Emergency Management Ministry of Emergency Management & Ministry of Education (ADREM), Beijing Normal University School of National Safety and Emergency Management, National Disaster Reduction Center of China, International Federation of Red Cross and Red Crescent Societies, IFRC, 2019-2022.
[2] 中华人民共和国国务院新闻办公室. 中国的远洋渔业发展白皮书[R]. 北京: 中华人民共和国国务院新闻办公室, 2023. The State Council Information Office of the People's Republic of China. Development of China's distant-water fisheries[R]. Beijing: The State Council Information Office of the People's Republic of China, 2023.
[3] 许振琦, 汪金涛, 雷林, 等. AIS数据在远洋渔业中的应用研究进展[J]. 海洋渔业, 2023, 45(2): 237-247. XU Z Q, WANG J T, LEI L, et al. Research progress on application of AIS data in distant-water fishery[J]. Marine Fisheries, 2023, 45(2): 237-247.
[4] 汤先峰, 张胜茂, 樊伟, 等. 基于北斗船位数据的江苏渔船航次分析[J]. 渔业现代化, 2020, 47(1): 63-71. TANG X F, ZHANG S M, FAN W, et al. Voyage analysis of Jiangsu fishing vessels based on Beidou position data[J]. Fishery Modernization, 2020, 47(1): 63-71.
[5] 高明远, 张胜茂, 汤先峰, 等. 中国近海捕捞机动渔船航次特征数据挖掘[J]. 大连海洋大学学报, 2021, 36(1): 147-154. GAO M Y, ZHANG S M, TANG X F, et al. Data mining of trip characteristics for offshore fishing vessels in China[J]. Journal of Dalian Ocean University, 2021, 36(1): 147-154.
[6] 王德兴, 罗静静, 袁红春. 渔船定位捕捞与环境因子的关联分析[J]. 导航定位学报, 2019, 7(4): 42-49. WANG D X, LUO J J, YUAN H C. Association analysis between fishing vessel positioning and environmental factors[J]. Journal of Navigation and Positioning, 2019, 7(4): 42-49.
[7] 吴佳文, 官文江. 基于SNPP/VIIRS夜光遥感数据的东、黄海渔船时空分布及其变化特点[J]. 中国水产科学, 2019, 26(2): 221-231. WU J W, GUAN W J. Study on the distribution and variation of fishing vessels in East China Sea and Yellow Sea based on the nighttime light remote sensing data from SNPP/VIIRS[J]. Journal of Fishery Sciences of China, 2019, 26(2): 221-231.
[8] TANG G L, CAO Q K, LI X. Analysis of vessel behaviors in costal waterways using big AIS data[C]//2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). Chengdu: IEEE, 2019: 290-294.
[9] ZHONG H Y, SONG X, YANG L. Vessel classification from spacebased AIS data using random forest[C]//20195th International Conference on Big Data and Information Analytics (BigDIA). Kunming: IEEE, 2019: 9-12.
[10] 赵东彬. 基于渔船作业数据的东海渔场特征分析[D]. 舟山: 浙江海洋大学, 2019. ZHAO D B. Analysis of fishery characteristics of East China Sea based on fishing vessel data[D]. Zhoushan: Zhejiang Ocean University, 2019.
[11] 吴宝福. 基于轨迹数据的渔船行为判别关键技术研究[D]. 杭州: 杭州电子科技大学, 2019. WU B F. Research on key technology of vessel behavior identification based on trajectory data[D]. Hangzhou: Hangzhou Dianzi University, 2019.
[12] ZHANG J L, GENG J L, WAN J, et al. An automatically learning and discovering human fishing behaviors scheme for CPSCN[J]. IEEE Access, 2018, 6: 19844-19858.
[13] 郭刚刚, 樊伟, 薛嘉伦, 等. 基于NPP/VIIRS夜光遥感影像的作业灯光围网渔船识别[J]. 农业工程学报, 2017, 33(10): 245-251. GUO G G, FAN W, XUE J L, et al. Identification for operating pelagic light-fishing vessels based on NPP/VIIRS low light imaging data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10): 245-251.
[14] WANG C, REN H X, LI H J. Vessel trajectory prediction based on AIS data and bidirectional GRU[C]//2020 International Conference on Computer Vision, Image and Deep Learning (CVIDL). Chongqing: IEEE, 2020: 260-264.
[15] FORTI N, MILLEFIORI L M, BRACA P, et al. Prediction oof vessel trajectories from AIS data via sequence-to-sequence recurrent neural networks[C]//ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Barcelona: IEEE, 2020: 8936-8940.
[16] HUAN Y C, KANG X Y, WANG Y F, et al. IAVT: anomalous vessel trajectory detection using AIS data[C]//20225th International Conference on Artificial Intelligence and Big Data (ICAIBD). Chengdu: IEEE, 2022: 17-22.
[17] 陈俊霖, 赵国庆, 张胜茂, 等. 西北印度洋公海渔场鸢乌贼的时空分布变化规律[J/OL]. 水产学报, (2025-01-08). http://kns.cnki.net/kcms/detail/31.1283.S.20230530.1003.002.html.. CHEN J L, ZHAO G Q, ZHANG S M, et al. Study on temporal and spatial distribution characteristics of Symplectoteuthis oualaniensis in high seas fishing ground of northwest Indian Ocean[J/OL]. Journal of Fisheries of China, (2025-01-08). http://kns.cnki.net/kcms/detail/31.1283.S.20230530.1003.002.html.
[18] 张亚男, 官文江, 李阳东. 印度洋长鳍金枪鱼栖息地指数模型的构建与验证[J]. 上海海洋大学学报, 2020, 29(2): 268-279. ZHANG Y N, GUAN W J, LI Y D. Construction and verification of a habitat suitability index model for the Indian Ocean albacore tuna[J]. Journal of Shanghai Ocean University, 2020, 29(2): 268-279.
[19] 温利红, 张衡, 方舟, 等. 不同捕捞方式下印度洋北部鸢乌贼渔场时空分布差异[J]. 上海海洋大学学报, 2021, 30(6): 1079-1089. WEN L H, ZHANG H, FANG Z, et al. Spatial and temporal distribution of fishing ground of Sthenoteuthis oualaniensis in northern Indian Ocean with different fishing methods[J]. Journal of Shanghai Ocean University, 2021, 30(6): 1079-1089.
[20] 陈新军, 钱卫国, 刘必林, 等. 主要经济大洋性鱿鱼资源渔场生产性调查与渔业概况[J]. 上海海洋大学学报, 2019, 28(3): 344-356. CHEN X J, QIAN W G, LIU B L, et al. Productive survey and fishery for major pelagic economic squid in the world[J]. Journal of Shanghai Ocean University, 2019, 28(3): 344-356.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号 电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn
本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626