基于谱逼近探究台风初始场误差对路径误差的影响 |
作者:梁东1 3 来志刚2 英晓明1 3 曾志豪2 高娜3 赵明利1 3 |
单位:1. 自然资源部海洋环境探测技术与应用重点实验室, 广东 广州 510300; 2. 广东省海洋资源与近岸工程重点实验室, 中山大学海洋科学学院, 广东 广州 510275; 3. 自然资源部南海发展研究院, 广东 广州 510300 |
关键词:初始场误差 非对称对流 位涡趋势诊断 路径误差 |
分类号:P457.8 |
|
出版年·卷·期(页码):2025·42·第一期(71-80) |
摘要:
|
针对多层嵌套中尺度天气研究与预报模式(WRF),以1713号台风“天鸽”为例,研究不同的热启动方式对台风模拟精度的影响,并以1614号台风“莫兰蒂”、1822号台风“山竹”和2309号台风“苏拉”为例进行模拟验证。结果表明:使用谱逼近能够减少大尺度环境场误差,改善台风周围环境场,减小多层嵌套WRF模式的初始场误差;此技术能避免由于垂直风切变的增强和累积降雨量的增大,减弱了非对称对流活动的强度;如果不使用该技术,加热项将削弱水平平流项对台风的引导作用,导致24~72 h台风路径模拟误差增加。结果揭示:采用谱逼近技术可有效缩小大尺度环境场的误差,优化台风周边环境场,并降低多层嵌套WRF模式初始场的误差,防止垂直风切变过度增强和累积降雨量异常增加,从而减轻非对称对流活动的强度,避免加热项削弱水平平流项对台风的导向作用,提高台风路径模拟准确性。 |
Based on multi-layer nested Weather Research Forecasting Model (WRF), the effects of different hot initializing methods on the simulation accuracy of No.1713 Typhoon "Hato" were studied, and No.1614 Typhoon "Meranti", No.1822 Typhoon "Mangkhut" and No.2309 Typhoon "Saola" are chosen as verification cases. The results showed that spectral nudging method could reduce the errors of large scale environment and initial field of the WRF model, and improve the environment field of the typhoon, which can avoid the elevation of vertical wind shear and cumulative rainfall, and weaken the intensity of the asymmetric convective activity of the typhoon. Otherwise, the diabatic heating would weaken the guidance of the horizontal advection to the typhoons, leading to an increase in the simulation error of typhoon paths within 24~72 hours. |
参考文献:
|
[1] 张恺, 杨隆浩, 高建清, 等. 基于累积置信规则库推理的台风灾害直接经济损失预测[J]. 灾害学, 2024, 39(1): 64-68. ZHANG K, YANG L H, GAO J Q, et al. Typhoon disaster direct economic losses prediction based on cumulative belief rule-based system[J]. Journal of Catastrophology, 2024, 39(1): 64-68. [2] CHA D H, WANG Y Q. A dynamical initialization scheme for realtime forecasts of tropical cyclones using the WRF model[J]. Monthly Weather Review, 2013, 141(3): 964-986. [3] KWON I H, CHEONG H B. Tropical cyclone initialization with a spherical high-order filter and an idealized three-dimensional bogus vortex[J]. Monthly Weather Review, 2010, 138(4): 1344-1367. [4] WANG D L, LIANG X D, ZHAO Y, et al. A comparison of two tropical cyclone bogussing schemes[J]. Weather and Forecasting, 2008, 23(1): 194-204. [5] 冯佳宁. 集合卡尔曼滤波(EnKF)岸基雷达资料同化对登陆台风数值模拟的影响研究[D]. 北京: 中国气象科学研究院, 2017. FENG J N. Study on groud-based radar data assimilation through Ensemble Kalman Filter on landing typhoon[D]. Beijing: Chinese Academy of Meteorological Sciences, 2017. [6] 顾建峰. 多普勒雷达资料三维变分直接同化方法研究[D]. 南京: 南京信息工程大学, 2006. GU J F. Study on the direct assimilation method of threedimensional variational data of Doppler radar[D]. Nanjing: Nanjing University of Information Science & Technology, 2006. [7] WALDRON K M, PAEGLE J, HOREL J D. Sensitivity of a spectrally filtered and nudged limited-area model to outer model options[J]. Monthly Weather Review, 1996, 124(3): 529-547. [8] STORCH H V, LANGENBERG H, FESER F. A spectral nudging technique for dynamical downscaling purposes[J]. Monthly Weather Review, 2000, 128(10): 3664-3673. [9] ROCKEL B, CASTRO C L, PIELKE SR R A, et al. Dynamical downscaling: assessment of model system dependent retained and added variability for two different regional climate models[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D21): D21107. [10] FESER F, VON STORCH H. Regional modelling of the western Pacific typhoon season 2004[J]. Meteorologische Zeitschrift, 2008, 17(4): 519-528. [11] 王淑莉, 徐祥德, 康红文, 等. 应用谱逼近方法模拟2008年初南方持续性降水过程及其水汽通道周期特征分析[J]. 大气科学, 2016, 40(3): 476-488. WANG S L, XU X D, KANG H W, et al. Simulation of continuous rainfall over South China in early 2008 with the spectral nudging method and the periodicity characteristics of the water vapor channel[J]. Chinese Journal of Atmospheric Sciences, 2016, 40(3): 476-488. [12] WANG H, WANG Y Q, XU H M. Improving simulation of a tropical cyclone using dynamical initialization and large-scale spectral nudging: a case study of Typhoon Megi (2010)[J]. Acta Meteorologica Sinica, 2013, 27(4): 455-475. [13] CHA D H, JIN C S, LEE D K, et al. Impact of intermittent spectral nudging on regional climate simulation using weather research and forecasting model[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D10): D10103. [14] 张兴海. 南海热带气旋迅速增强的数值模拟[D]. 北京: 中国气象科学研究院, 2017. ZHANG X H. A numerical study of tropical cyclone rapid intensification in South China Sea[D]. Beijing: Chinese Academy of Meteorological Sciences, 2017. [15] 许冬梅, 束艾青, 李泓, 等. FY-2G云导风资料同化在台风"天鸽" 数值预报中的应用[J]. 海洋预报, 2022, 39(1): 56-66. XU D M, SHU A Q, LI H, et al. Application of FY-2G AMVs data assimilation in typhoon "Hato" numerical forecasting[J]. Marine Forecasts, 2022, 39(1): 56-66. [16] 贾宁, 刘强, 石先武, 等. 基于现场调查的台风“天鸽”(1713)和台风“山竹”(1822)风暴潮灾害影响和致灾对比分析[J]. 海洋预报, 2022, 39(5): 94-99. JIA N, LIU Q, SHI X W, et al. Comparative analysis of the impact of typhoon storm surge disaster and the disaster-causing difference between typhoon "Hato" (1713) and "Mangkhut" (1822) based on field survey[J]. Marine Forecasts, 2022, 39(5): 94-99. [17] WU L G, WANG B. A potential vorticity tendency diagnostic approach for tropical cyclone motion[J]. Monthly Weather Review, 2000, 128(6): 1899-1911. [18] WU L G, CHEN X Y. Revisiting the steering principal of tropical cyclone motion in a numerical experiment[J]. Atmospheric Chemistry and Physics, 2016, 16(23): 14925-14936. [19] WARNER J C, ARMSTRONG B, HE R Y, et al. Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System[J]. Ocean Modelling, 2010, 35(3): 230-244. [20] DOYLE J D, HODUR R M, CHEN S, et al. Tropical cyclone prediction using COAMPS-TC[J]. Oceanography, 2014, 27(3): 104-115. [21] KIMBALL S K, DOUGHERTY F C. The sensitivity of idealized hurricane structure and development to the distribution of vertical levels in MM5[J]. Monthly Weather Review, 2006, 134(7): 1987-2008. [22] BENDER M A, GINIS I, TULEYA R, et al. The operational GFDL coupled hurricane-ocean prediction system and a summary of its performance[J]. Monthly Weather Review, 2007, 135(12): 3965-3989. [23] GREEN B W, ZHANG F Q. Impacts of air-sea flux parameterizations on the intensity and structure of tropical cyclones[J]. Monthly Weather Review, 2013, 141(7): 2308-2324. [24] PUN I F, CHAN J C L, LIN I I, et al. Rapid intensification of Typhoon Hato (2017) over shallow water[J]. Sustainability, 2019, 11(13): 3709. [25] ROGERS R, REASOR P, LORSOLO S. Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones[J]. Monthly Weather Review, 2013, 141(9): 2970-2991. [26] 沈阳. 垂直风切变对大西洋飓风波尼(1998)结构与强度的影响[D]. 南京: 南京信息工程大学, 2012. SHEN Y. Effects of vertical wind shear on the structures and intensity of Hurricane Bonnie (1998) [D]. Nanjing: Nanjing University of Information Science & Technology, 2012. [27] 贺海晏. 台风移动规律的研究I. 非绝热加热与水平温度分布的影响[J]. 热带气象学报, 1995, 11(1): 1-9. HE H Y. A study on typhoon movement I. the effect of diabatic heating and horizontal temperature distribution[J]. Journal of Tropical Meteorology, 1995, 11(1): 1-9. [28] CHAN J C L. The physics of tropical cyclone motion[J]. Annual Review of Fluid Mechanics, 2005, 37(1): 99-128. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|