WRF动力降尺度方法在广东近海风资源评估中的适用性分析 |
作者:杜梦蛟1 2 王臻臻3 张磊2 文仁强1 李华4 5 夏静雯3 辛欣3 易侃1 贾天下1 |
单位:1. 中国长江三峡集团有限公司科学技术研究院, 北京 100038; 2. 中国长江三峡集团有限公司广东分公司, 广东 广州 510030; 3. 宁波市鄞州区气象局, 浙江 宁波 315194; 4. 南京信息工程大学 水利部水文气象灾害机理与预警重点实验室/气象灾害预报预警与评估协同创新中 |
关键词:风能资源 适用性评估 海上风电 WRF模式 |
分类号:P457.5 |
|
出版年·卷·期(页码):2025·42·第一期(89-97) |
摘要:
|
利用WRF模式对ERA5再分析数据进行动力降尺度,获得近海高分辨率的WRF数据,并利用3座测风塔观测数据对WRF高分辨率数据和ERA5再分析数据进行适用性分析。结果表明:WRF模式的风速与观测更为接近,ERA5易低估各层风速;WRF和ERA5对广东近海主导风向的再现能力基本一致,且均能反映主导风向;WRF和ERA5风速的时间序列与观测的相关性都很高,均通过99%显著性检验;相较于ERA5,WRF拟合得到的威布尔参数与观测更为接近。因此相较于ERA5,WRF模拟数据更适用于对广东风能资源的评估。利用WRF模拟得到的广东近海风资源空间分布结果表明,广东近海风能密度大(>200 W/m2),有效风速的出现频率高(>0.88),且具有单一或两个主导风向,以上特征有利于广东近海的风能资源开发。 |
This study employs the WRF model (Weather Research and Forecasting Model, WRF) to dynamically downscale ERA5 (ECMWF Reanalysis v5) reanalysis data, yielding high-resolution WRF data. The applicability of the WRF high-resolution data and ERA5 reanalysis data is assessed using observation data of 3 wind towers. Results show that wind speeds derived from the WRF exhibit closer agreement with observations, whereas ERA5 tends to underestimate wind speeds. Both WRF and ERA5 demonstrate comparable capabilities in reproducing the dominant wind directions in offshore Guangdong, reflecting these directions as well. The correlation coefficient between WRF (ERA5) and the observations exceeds the 99% confidence level. Compared with ERA5, the performance of Weibull fitting using WRF data is closer to the observations. Consequently, WRF data are more suitable than ERA5 for assessing wind energy resources in offshore Guangdong. The spatial distribution of wind resources, as derived from WRF data, reveals substantial wind power densities (>200 W/m2), a high frequency of effective wind speeds (>0.88). These factors, combined with the presence of one or two dominant wind directions, collectively indicate favorable conditions for wind energy development in offshore Guangdong. |
参考文献:
|
[1] 辛华龙. 中国海上风能开发研究展望[J]. 中国海洋大学学报, 2010, 40(6): 147-152. XIN H L. Aspect on the development of offshore wind energy in China[J]. Periodical of Ocean University of China, 2010, 40(6): 147-152. [2] 龚强, 袁国恩, 张云秋, 等. MM5模式在风能资源普查中的应用试验[J]. 资源科学, 2006, 28(1): 145-150. GONG Q, YUAN G E, ZHANG Y Q, et al. Application of MM5 model in wind energy resources survey[J]. Resources Science, 2006, 28(1): 145-150. [3] 广东印发《广东省碳达峰实施方案》[J]. 中国氯碱, 2023(2): 58. Implementation plan for carbon peak in Guangdong Province[J]. China Chlor-Alkali, 2023(2): 58. [4] 李泽椿, 朱蓉, 何晓凤, 等. 风能资源评估技术方法研究[J]. 气象学报, 2007, 65(5): 708-717. LI Z C, ZHU R, HE X F, et al. Study on the assessment technology of wind energy resource[J]. Acta Meteorologica Sinica, 2007, 65(5): 708-717. [5] 罗勇, 曹鹏, 杨凤志, 等. 中尺度数据在风电项目前期开发过程中的应用现状[J]. 船舶工程, 2020, 42(S2): 233-235. LUO Y, CAO P, YANG F Z, et al. Application status of mesoscale data in early stage of development process of wind power projects [J]. Ship Engineering, 2020, 42(S2): 233-235. [6] 龚强, 袁国恩, 汪宏宇, 等. 应用MM5模式对地面大风过程的模拟试验[J]. 气象, 2005, 31(4): 53-57. GONG Q, YUAN G E, WANG H Y, et al. Simulation experiments on surface gale process with MM5 model[J]. Meteorological Monthly, 2005, 31(4): 53-57. [7] 高山红, 谢红琴, 吴增茂, 等. 台风影响下渤海及邻域海面风场演变过程的MM5模拟分析[J]. 青岛海洋大学学报, 2001, 31(3): 325-331. GAO S H, XIE H Q, WU Z M, et al. A simulation analysis of the evolution of the surface wind fields of Bohai Sea and the vicinity area under the influence of typhoon Tai-Tak with MM5[J]. Journal of Ocean University of Qingdao, 2001, 31(3): 325-331. [8] 凌铁军, 张蕴斐, 杨学联, 等. 中尺度数值预报模式(MM5)在海面风场预报中的应用[J]. 海洋预报, 2004, 21(4): 1-9. LIN T J, ZHANG Y F, YANG X L, et al. The application of MM5 model to predict sea surface wind field[J]. Marine Forecasts, 2004, 21(4): 1-9. [9] 杜梦蛟, 邓浩, 文仁强, 等. 大气再分析资料在中国近海的风资源特征和适用性分析[J]. 气候与环境研究, 2023, 28(5): 483-494. DU M J, DENG H, WEN R Q, et al. Wind resource characteristics and applicability of atmospheric reanalysis data in offshore China [J]. Climatic and Environmental Research, 2023, 28(5): 483-494. [10] 朱景, 袁慧珍. ERA再分析陆面温度资料在浙江省的适用性[J]. 气象科技, 2019, 47(2): 289-298. ZHU J, YUAN H Z. Applicability of ERA reanalysis data of land surface temperature in Zhejiang Province[J]. Meteorological Science and Technology, 2019, 47(2): 289-298. [11] 张凯峰, 项杰, 杨波, 等. 基于ERA-interim再分析资料的ASCAT风场产品在南海的精度评估及南海月平均风场特征分析[J]. 海洋预报, 2017, 34(2): 27-36. ZHANG K F, XIANG J, YANG B, et al. Validation of ASCAT satellite scatterometer winds based on ERA-interim and monthly mean wind field over the South China Sea[J]. Marine Forecasts, 2017, 34(2): 27-36. [12] 孟宪贵, 郭俊建, 韩永清. ERA5再分析数据适用性初步评估[J]. 海洋气象学报, 2018, 38(1): 91-99. MENG X G, GUO J J, HAN Y Q. Preliminarily assessment of ERA5 reanalysis data[J]. Journal of Marine Meteorology, 2018, 38(1): 91-99. [13] 许昌, 吉晓红, 胡会永, 等. 利用再分析数据插补测风数据的准确性分析[J]. 风能, 2017(5): 100-104. XU C, JI X H, HU H Y, et al. Accuracy analysis of the wind tower data with interpolation from reanalysis data[J]. Wind Energy, 2017(5): 100-104. [14] 刘霄, 赖旭, 郑付明. 基于再分析数据的测风数据插补方法[J]. 华中科技大学学报(自然科学版), 2017, 45(7): 78-83. LIU X, LAI X, ZHENG F M. Analysis of the interpolation method for wind speed data based on reanalysis data[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(7): 78-83. [15] 冯双磊, 王伟胜, 刘纯, 等. NCEP/NCAR再分析数据在风能资源评估中的应用研究[J]. 资源科学, 2009, 31(7): 1233-1237. FENG S L, WANG W S, LIU C, et al. The application of NCEP/NCAR reanalysis data to the assessment of the wind resource[J]. Resources Science, 2009, 31(7): 1233-1237. [16] 敖雪, 翟晴飞, 崔妍, 等. 三种风场再分析资料在辽宁省海岸带的比较与评估[J]. 高原气象, 2018, 37(1): 275-285. AO X, ZHAI Q F, CUI Y, et al. Comparison and evaluation of three types of wind field reanalysis data in coastal zone of Liaoning Province[J]. Plateau Meteorology, 2018, 37(1): 275-285. [17] 张德, 朱蓉, 罗勇, 等. 风能模拟系统west在中国风能数值模拟中的应用[J]. 高原气象, 2008, 27(1): 202-207. ZHANG D, ZHU R, LUO Y, et al. Application of wind energy simulation toolkit (WEST) to wind energy numerical simulation of China[J]. Plateau Meteorology, 2008, 27(1): 202-207. [18] 易侃, 张子良, 张皓, 等. 海上风能资源评估数值模拟技术现状及发展趋势[J]. 分布式能源, 2021, 6(1): 1-6. YI K, ZHANG Z L, ZHANG H, et al. Technical status and development trends of numerical modeling for offshore wind resource assessment[J]. Distributed Energy, 2021, 6(1): 1-6. [19] 黄俊辉, 孙文涛, 李辰, 等. 基于WRF模式的海上风能资源特性分析及评价[J]. 太阳能学报, 2021, 42(7): 278-283. HUANG J H, SUN W T, LI C, et al. Analysis and evaluation of offshore wind energy resources characteristics based on WRF model[J]. Acta Energiae Solaris Sinica, 2021, 42(7): 278-283. [20] 杜梦蛟, 易侃, 文仁强, 等. WRF模式中不同物理参数化方案组合在中国近海风能资源评估中的适用性研究[J]. 海洋预报, 2023, 40(1): 65-78. DU M J, YI K, WEN R Q, et al. Study on the applicability of different combination of physical parameterization schemes of WRF model in assessing offshore wind energy resources of China [J]. Marine Forecasts, 2023, 40(1): 65-78. [21] HERSBACH H, BELL B, BERRISFORD P, et al. ERA5 hourly data on single levels from 1940 to present[Z]. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2023, DOI: 10.24381/cds.adbb2d47. [22] 彭雯, 高艳红. 青藏高原融冻过程中能量和水分循环的模拟研究[J]. 冰川冻土, 2011, 33(2): 364-373. PENG W, GAO Y H. A simulation of the energy and water cycles in seasonal freezing-thawing process on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2011, 33(2): 364-373. [23] 许建伟, 高艳红. WRF模式对夏季黑河流域气温和降水的模拟及检验[J]. 高原气象, 2014, 33(4): 937-946. XU J W, GAO Y H. Validation of summer surface air temperature and precipitation simulation over Heihe River Basin[J]. Plateau Meteorology, 2014, 33(4): 937-946. [24] MA M, HE B, GUAN Y, et al. Assessment of global wind energy resource utilization potential[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, XLII-2/W7: 1283-1289. [25] ARSLAN T, MURAT BULUT Y, YAVUZ A A. Comparative study of numerical methods for determining Weibull parameters for wind energy potential[J]. Renewable and Sustainable Energy Reviews, 2014, 40: 820-825. [26] 中华人民共和国国家质量监督检验检疫总局. GB/T 18710-2002风电场风能资源评估方法[S]. 北京: 中国标准出版社, 2004: 1-19. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 18710-2002 Methodology of wind energy resource assessment for wind farm [S]. Beijing: China Standard Press: 1-19. [27] 王哲, 张韧, 葛珊珊, 等. 俄罗斯北部海域风能资源的时空特征分析[J]. 海洋科学进展, 2018, 36(3): 465-477. WANG Z, ZHANG R, GE S S, et al. Spatial and temporal characteristics of wind energy resources in northern sea of Russia [J]. Advances in Marine Science, 2018, 36(3): 465-477. [28] 周武, 黄小丹, 黄忠, 等. 阳江地区海陆风特征及其影响[J]. 气象, 2008, 34(12): 44-53. ZHOU W, HUANG X D, HUANG Z, et al. The characteristic of sea-land breeze in Yangjiang Area and its impact on precipitation and temperature[J]. Meteorological Monthly, 2008, 34(12): 44-53. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|