考虑排水管网的海甸岛城市淹没影响数值模拟研究 |
作者:程广晨1 2 江文胜3 4 |
单位:1. 海南省环境科学研究院, 海南 海口 570100; 2. 中国海洋大学三亚海洋研究院, 海南 三亚 572000; 3. 中国海洋大学海洋环境与生态教育部重点实验室, 山东 青岛 266100; 4. 中国海洋大学环境科学与工程学院, 山东 青岛 266100 |
关键词:风暴潮漫滩 城市淹没 数值模拟 耦合模型 海甸岛 |
分类号:P731 |
|
出版年·卷·期(页码):2025·42·第二期(9-17) |
摘要:
|
为探究排水系统在极端天气条件下对海甸岛城市复合淹没的影响,采用ADCIRCSWMM耦合模型,建立了风暴潮漫滩数值模型,通过模拟极端天气事件下的城市淹没过程,分析排水系统在极端事件下对海甸岛城市复合淹没的影响。模拟结果表明:排水系统增加了海甸岛内部系统与海洋的连通性,正常情况下可以起到防洪排涝作用,降低城市的淹没风险;而当极端天气事件发生时,随着外海水位上升,排水口可能会受到潮位顶托的影响,导致排水效率降低。这表明,排水系统对城市防洪排涝具有双重作用,既有利于平时的防洪排涝,但是在极端事件发生时,也会增加城市的淹没风险。 |
In order to investigate the effect of drainage system on urban compound inundation of Haidian Island under extreme weather conditions, a numerical model of storm surge flooding is established using the ADCIRCSWMM coupled model. The simulation results show that the drainage system increases the connectivity between the internal system of Haidian Island and the ocean, which plays a positive role in flood prevention and drainage and reduces the urban inundation risk under normal conditions. When an extreme weather event occurs, especially the water level in the outer sea rises, the drainage inlet may be affected by the high tidal level, which leads to the reduction of the drainage efficiency. This suggests that the drainage system has a dual feature for urban flood control and drainage, which is conducive to flood control and drainage in normal conditions, but also increases the risk of urban inundation when extreme events occur. |
参考文献:
|
[1] 冯士筰. 风暴潮导论[M]. 北京:科学出版社, 1982:44-46. FENG S Z. Introduction to storm surge[M]. Beijing:Science Press, 1982:44-46. [2] 自然资源部. 2023年中国海洋灾害公报[EB/OL]. (2024-05-13). https://www.nmdis.org.cn/hygb/zghyzhgb/2023nzghyzhgb/Ministry of Natural Resources. China marine disaster bulletin[EB/OL]. (2024-05-13). https://www.nmdis.org.cn/hygb/zghyzhgb/2023nzghyzhgb/ [3] IPCC. Climate change 2021:the physical science basis:working group I contribution to the sixth assessment report of the intergovernmental panel on climate change[R]. Cambridge:Cambridge University Press, 2023. [4] WANG Q, ZHANG R J, LI H Y, et al. Analysis of mechanism and optimal value of urban built environment resilience in response to stormwater flooding[J]. Ecological Indicators, 2024, 158:111625. [5] VIJAYAN L, HUANG W R, MA M D, et al. Rapid simulation of storm surge inundation for hurricane evacuation in Florida by multi-scale nested modeling approach[J]. International Journal of Disaster Risk Reduction, 2023, 99:104134. [6] QIAN X J, HWANG S, SON S. A study on key determinants in enhancing storm surges along the coast:interplay between tropical cyclone motion and coastal geometry[J]. Journal of Geophysical Research:Oceans, 2024, 129(2):e2023JC020400. [7] IKEUCHI H, HIRABAYASHI Y, YAMAZAKI D, et al. Compound simulation of fluvial floods and storm surges in a global coupled river-coast flood model:model development and its application to 2007 Cyclone Sidr in Bangladesh[J]. Journal of Advances in Modeling Earth Systems, 2017, 9(4):1847-1862. [8] OLBERT A I, COMER J, NASH S, et al. High-resolution multiscale modelling of coastal flooding due to tides, storm surges and rivers inflows. A Cork City example[J]. Coastal Engineering, 2017, 121:278-296. [9] BUSCHMAN F A, HOITINK A J F, VAN DER VEGT M, et al. Subtidal water level variation controlled by river flow and tides[J]. Water Resources Research, 2009, 45(10):W10420. [10] SHI S Y, YANG B, JIANG W S. Numerical simulations of compound flooding caused by storm surge and heavy rain with the presence of urban drainage system, coastal dam and tide gates:a case study of Xiangshan, China[J]. Coastal Engineering, 2022, 172:104064. [11] LUETTICH JR R A, WESTERINK J J, SCHEFFNER N W. ADCIRC:an advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 1. Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL[R]. Washington:US Army Corps of Engineers, 1992. [12] ROSSMAN L A. Storm water management model user's manual version 5.1[M]. Cincinnati:United States Environmental Protection Agency, 2015. [13] 施劭瑜, 杨波, 江文胜, 等. 土地利用类型对滨海城市复合淹没的影响——以象山县为例[J]. 中国海洋大学学报, 2023, 53(2):83-93. SHI S Y, YANG B, JIANG W S, et al. Impact of land use types on compound flooding in coastal cities:a case study of Xiangshan, China[J]. Periodical of Ocean University of China, 2023, 53(2):83-93. [14] 梁海燕. 海南岛风暴潮灾害承灾体初步分析[J]. 海洋预报, 2007, 24(1):9-15. LIANG H Y. Analyze estates loss that cause by storm surge disaster of Hainan Island[J]. Marine Forecasts, 2007, 24(1):9-15. [15] 吴海春, 黄国如. 基于PCSWMM模型的城市内涝风险评估[J]. 水资源保护, 2016, 32(5):11-16. WU H C, HUANG G R. Risk assessment of urban waterlogging based on PCSWMM model[J]. Water Resources Protection, 2016, 32(5):11-16. [16] 严云杰, 周维, 龚裕院, 等. 温州市三江河口风暴潮预报模型的建立与验证[J]. 浙江水利科技, 2015, 43(5):60-63. YAN Y J, ZHOU W, GONG Y Y, et al. Establishment and verification of storm surge forecast model about Three River estuaries in Wenzhou[J]. Zhejiang Hydrotechnics, 2015, 43(5):60-63. [17] 方利剑. 海口市海甸岛、盐灶片区内涝问题防治措施的研究[D]. 武汉:武汉工程大学, 2018. FANG L J. Research on prevention and control measures of Haidian island, Yanzao area waterlogging problems in Haikou City[D]. Wuhan:Wuhan Institute of Technology, 2018. [18] YING M, ZHANG W, YU H, et al. An overview of the China Meteorological Administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2):287-301. [19] LU X Q, YU H, YING M, et al. Western north Pacific tropical cyclone database created by the China Meteorological Administration[J]. Advances in Atmospheric Sciences, 2021, 38(4):690-699. [20] JELESNIANSKI C P. A numerical calculation of storm tides induced by a tropical storm impinging on a continental shelf[J]. Monthly Weather Review, 1965, 93(6):343-358. [21] 张灵敏. 排水管网水力计算及暴雨积水模拟方法研究[D]. 广州:华南理工大学, 2015. ZHANG L M. Hydraulic calculation of drainage network and simulation method of storm waterlogging study[D]. Guangzhou:South China University of Technology, 2015 |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|