摘要:
|
基于2022年全球通讯系统(GTS)共享的志愿观测船观测数据,与欧洲中期天气预报中心的ERA5数据开展比较研究。采用定量统计指标(相关系数CC、相对偏差RB、均方根误差RMSE、平均误差ME、平均绝对误差MAE),重点分析海洋气象基本气候变量观测船舶(ECVs船舶)获得的气温、气压、相对湿度、风速等要素的有效观测数据与ERA5数据在不同时间、不同区域的一致性,并探究船舶观测的气象数据在全球的适用性。结果表明:ECVs船舶数据总体可反映各个要素的变化趋势,其中气温数据与ERA5数据的一致性最高,CC和RB分别为0.99和1.59%;其次为气压数据,CC下降至0.90,ME为-2.42 hPa;再次为相对湿度数据,RMSE和MAE分别为8.16%和5.89%;一致性最差的是风速数据,CC和RB分别为0.74和22.85%。ECVs船舶在不同季节和月份观测的数据质量存在差异,其中气温数据与ERA5数据的一致性最高且最稳定。针对不同海域的ECVs船舶数据的分析表明,西太平洋、印度洋、北大西洋海域船舶的数据质量各有优劣。气温和相对湿度的评价指标具有较明显的日变化特征,但气压和风速评价指标的日变化不明显。 |
In this paper, a comparative study between the ERA5 data and the Voluntary Observing Ships (VOS) data shared by the Global Telecommunication System (GTS) in 2022 is conducted. Using quantitative statistical metrics (correlation coefficient-CC, relative bias-RB, root mean squared error-RMSE, mean error-ME, mean absolute error-MAE), the data consistency and applicability of air temperature, pressure, relative humidity and wind speed observed by the VOS are assessed from aspects of periods and regions. The VOS that could observe simultaneously Essential Climate Variables (air temperature, water vapor, surface pressure, wind speed and direction) are defined as ECVs ships in the paper. The results show that the ECVs ships data have reasonable changing trends generally, among which the air temperature data has the best statistical metrics with CC and RB being 0.99 and 1.59%, respectively. The second best data is air pressure, with CC dropping to 0.90 and ME being -2.42 hPa. The third best data is relative humidity, with RMSE and MAE being 8.16% and 5.89%, respectively. The wind speed data is not good, with CC and RB being 0.74 and 22.85%, respectively. The quality of the ECVs ships data varies in different seasons and months, the consistency of air temperature between the ECVs ships and ERA5 data is the best and most stable. The analysis of the ECVs ships data in different ocean areas shows that the statistical metrics in Western Pacific, Indian Ocean and North Atlantic have their own advantages and disadvantages respectively. The statistical metrics of air temperature and relative humidity have significant diurnal variation, while those of air pressure and wind speed have not. |
参考文献:
|
[1] 蔡榕硕, 韩志强, 杨正先. 海洋的变化及其对生态系统和人类社会的影响、风险及应对[J]. 气候变化研究进展, 2020, 16(2):182- 193. CAI R S, HAN Z Q, YANG Z X. Impacts and risks of changing ocean on marine ecosystems and dependent communities and related responses[J]. Climate Change Research, 2020, 16(2):182- 193. [2] 施敏琦. 中国沿海低地人口分布及人群自然灾害脆弱性研究[D]. 上海:上海师范大学, 2012. SHI M Q. Study on the population spatial distribution and its natural disaster vulnerability in China's low elevation coastal zone[D]. Shanghai:Shanghai Normal University, 2012. [3] 邓凤飞, 张旭. 大西洋经向翻转环流对岁差响应的气候背景依赖性[J]. 海洋学报, 2022, 44(9):13-22. DENG F F, ZHANG X. Background climate dependence of Atlantic meridional overturning circulation responding to precessional change[J]. Haiyang Xuebao, 2022, 44(9):13-22. [4] 郭鑫, 韩震, 廖廓. 基于ERA5再分析资料的中国近海浅水区域风能潜力评估[J]. 海洋通报, 2022, 41(3):325-335. GUO X, HAN Z, LIAO K. Assessment of wind energy potential in shallow water offshore China based on ERA5 reanalysis data[J]. Marine Science Bulletin, 2022, 41(3):325-335. [5] BOYER T, ZHANG H M, O'BRIEN K, et al. Effects of the pandemic on observing the global ocean[J]. Bulletin of the American Meteorological Society, 2023, 104(2):E389-E410. [6] MOLTMANN T, TURTON J, ZHANG H M, et al. A Global Ocean Observing System (GOOS), delivered through enhanced collaboration across regions, communities, and new technologies[J]. Frontiers in Marine Science, 2019, 6:291. [7] NARAYANAN S, DEXTER P. The joint WMO/IOC technical commission for oceanography and marine meteorology (JCOMM) an integrated approach to marine programs[J]. CMOS Bulletin SCMO, 2022, 20(4):30-48. [8] MCMAHON C R, ROQUET F, BAUDEL S, et al. Animal Borne Ocean Sensors-AniBOS-An essential component of the Global Ocean Observing System[J]. Frontiers in Marine Science, 2021, 8:751840. [9] 李国祥, 王海燕. 基于GOOS系统的全球智能海船助航系统构想[J]. 中国船检, 2021(4):70-72. LI G X, WANG H Y. Conception of global intelligent seagoing ship navigation assistance system based on GOOS system[J]. China Ship Survey, 2021(4):70-72. [10] 韩林生, 王祎. 全球海洋观测系统展望及对我国的启示[J]. 地球科学进展, 2022, 37(11):1157-1164. HAN L S, WANG Y. Prospect of global ocean observing system and enlightenment to China[J]. Advances in Earth Science, 2022, 37(11):1157-1164. [11] KENT E C, BALL G, BERRY D I, et al. The voluntary observing ship (VOS) scheme[M]//HALL J, HARRISON D E, STAMMER D. Proceedings of OceanObs'09:Sustained Ocean Observations and Information for Society. Noordwijk:European Space Agency, 2010:551-561. [12] 刘家沂. 国际志愿观测船计划[J]. 海洋开发与管理, 2008, 25(2):18-22. LIU J Y. International volunteer observation ship program[J]. Ocean Development and Management, 2008, 25(2):18-22. [13] 陈君芝, 施晓晖, 温敏. ERA5再分析10m风速数据在"两洋一海"的适用性分析[J]. 气象, 2023, 49(1):39-51. CHEN J Z, SHI X H, WEN M. Applicability of ERA5 surface wind speed data in the region of "two oceans and one sea"[J]. Meteorological Monthly, 2023, 49(1):39-51. [14] 耿姗姗, 韩春花, 徐珊珊, 等. ERA5海面气压和风速再分析资料在渤海和北黄海适用性分析[J]. 海洋通报, 2023, 42(2):159-168. GENG S S, HAN C H, XU S S, et al. Applicability analysis of the sea surface pressure and wind speed of ERA5 reanalysis data in the Bohai Sea and the northern Huanghai Sea[J]. Marine Science Bulletin, 2023, 42(2):159-168. [15] 李明, 刘骥平, 张占海, 等. 利用南大洋漂流浮标数据评估AMSR-E SST[J]. 海洋学报, 2010, 32(6):47-55. LI M, LIU J P, ZHANG Z H, et al. Evaluation of AMSR-E SST in the Southern Ocean using drifting buoy data[J]. Acta Oceanologica Sinica, 2010, 32(6):47-55. [16] KENT E C, TAYLOR P K, TRUSCOTT B S, et al. The accuracy of voluntary observing ships'meteorological observations-results of the VSOP-NA[J]. Journal of Atmospheric and Oceanic Technology, 1993, 10(4):591-608. [17] KENT E C, WOODRUFF S D, BERRY D I. Metadata from WMO publication NO. 47 and an assessment of voluntary observing ship observation heights in ICOADS[J]. Journal of Atmospheric and Oceanic Technology, 2007, 24(2):214-234. [18] 施丽娟, 冯婉悦, 雷勇, 等. GPM日降水产品在中国大陆的准确性评估[J]. 气象, 2022, 48(11):1428-1438. SHI L J, FENG W Y, LEI Y, et al. Accuracy evaluation of daily GPM precipitation product over mainland China[J]. Meteorological Monthly, 2022, 48(11):1428-1438. [19] 肖柳斯, 张阿思, 闵超, 等. GPM卫星降水产品在台风极端降水过程的误差评估[J]. 高原气象, 2019, 38(5):993-1003. XIAO L S, ZHANG A S, MIN C, et al. Evaluation of GPM satellite-based precipitation estimates during three tropical-related extreme rainfall events[J]. Plateau Meteorology, 2019, 38(5):993- 1003. [20] 刘婷婷, 朱秀芳, 张世喆, 等. ERA5再分析地面气温数据在中国区域的适用性分析[J]. 热带气象学报, 2023, 39(1):78-88. LIU T T, ZHU X F, ZHANG S Z, et al. Applicability analysis of ERA5 reanalysis surface air temperature data in China[J]. Journal of Tropical Meteorology, 2023, 39(1):78-88. [21] JIANG Q, LI W Y, FAN Z D, et al. Evaluation of the ERA5 reanalysis precipitation dataset over Chinese mainland[J]. Journal of Hydrology, 2021, 595:125660. [22] HERSBACH H, BELL B, BERRISFORD P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730):1999-2049. [23] 朱景, 袁慧珍. ERA再分析陆面温度资料在浙江省的适用性[J]. 气象科技, 2019, 47(2):289-298. ZHU J, YUAN H Z. Applicability of ERA reanalysis data of land surface temperature in Zhejiang province[J]. Meteorological Science and Technology, 2019, 47(2):289-298. [24] 李力锋, 陈雄, 李崇银, 等. 2019年2-3月中国南方持续性降水成因及其与MJO的关系[J]. 气象, 2022, 48(9):1090-1100. LI L F, CHEN X, LI C Y, et al. Causes of persistent precipitation over southern China during February-March 2019 and the relationship with MJO[J]. Meteorological Monthly, 2022, 48(9):1090-1100. [25] 邹梦, 乔少博, 吴永萍, 等. 热带印度洋-西太平洋水汽输送异常对中国东部夏季降水的影响[J]. 大气科学, 2017, 41(5):988-998. ZOU M, QIAO S B, WU Y P, et al. Effects of anomalous water vapor transport from tropical Indian ocean-western Pacific on summer rainfall in Eastern China[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(5):988-998. [26] DESER C, TIMLIN M S. Atmosphere-ocean interaction on weekly timescales in the North Atlantic and Pacific[J]. Journal of Climate, 1997, 10(3):393-408. [27] ZUO J Q, LI W J, SUN C H, et al. Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon[J]. Advances in Atmospheric Sciences, 2013, 30(4):1173-1186. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|