首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
风漂因子在溢油模拟中的影响分析
作者:吴悠1  纪棋严1  杨逸秋2  左军成3  田逸伦1  张雨婷1  周婵娟4 
单位:1. 浙江海洋大学 海洋科学与技术学院, 浙江 舟山 316022;
2. 国家海洋环境预报中心 自然资源部海洋灾害预报技术重点实验室, 北京 100081;
3. 上海海洋大学 海洋科学与生态环境学院, 上海 201306;
4. 武汉大学 生命科学学院, 湖北 武汉 430072
关键词:风漂因子 溢油模型 GNOME模型 NOOFM模型 
分类号:P732.1;X55
出版年·卷·期(页码):2025·42·第二期(99-108)
摘要:
对中国近海“桑吉”轮溢油和地中海黎巴嫩溢油案例进行深入分析,比较了GNOME(General NOAA Operational Modeling Environment)和NOOFM(NMEFC Operational OilspillForecasting Model)两种溢油模型在处理风漂因子方面的差异以及风漂因子对溢油扩散产生的影响。研究结果表明:风漂因子对溢油轨迹的模拟有显著影响,尤其是在风速和风向变化的情况下。在“桑吉”轮溢油案例中,NOOFM模型展现出对中国近海环境下风漂因子的高效处理能力,模拟结果与实际观测接近。在黎巴嫩溢油案例中,NOOFM模型在风的影响下表现出良好的近岸模拟效果,而GNOME模型的溢油形态模拟则更符合卫星观测。研究结果进一步强调了风漂因子在溢油模拟中的重要性,尤其在不同海域环境下需要提高溢油模型对风漂因子反应的准确性和适应性。
This study conducts a detailed analysis of the Sanchi case in China's nearshore waters and the Lebanon case in the Mediterranean, comparing the differences between the GNOME (General NOAA Operational Modeling Environment) and NOOFM (NMEFC Operational Oil Spill Forecasting Model) oil spill models in handling wind drift factors and their varying impacts on oil spill diffusion. The results show that the wind drift factor significantly influences the simulation of oil spill trajectories, especially under changing wind speeds and directions. In the Sanchi case, the NOOFM model demonstrates efficient handling of the wind drift factor in China's nearshore environment, with the simulation results more closely aligning with actual observations. In the Lebanon case, the NOOFM model shows good nearshore simulation performance under the influence of wind, while the GNOME model simulation of oil spill morphology aligns better with satellite observation data. The results further emphasize the importance of wind drift factors in oil spill simulation, especially in improving the accuracy and adaptability of oil spill models to wind drift factors in different marine environments.
参考文献:
[1] POLINOV S, BOOKMAN R, LEVIN N. Spatial and temporal assessment of oil spills in the Mediterranean Sea[J]. Marine Pollution Bulletin, 2021, 167:112338.
[2] REED M, DALING P S, BRAKSTAD O G, et al. OSCAR2000:a multi-component 3-dimensional oil spill contingency and response model[R]. Ottawa:Environment Canada, 2000:663-680.
[3] SPAULDING M, LI Z K, MENDELSOHN D, et al. Application of an integrated blowout model system, OILMAP DEEP, to the Deepwater Horizon (DWH) spill[J]. Marine Pollution Bulletin, 2017, 120(1-2):37-50.
[4] NELSON J R, GRUBESIC T H, SIM L, et al. Approach for assessing coastal vulnerability to oil spills for prevention and readiness using GIS and the Blowout and Spill Occurrence Model[J]. Ocean & Coastal Management, 2015, 112:1-11.
[5] YAPA P D, ZHENG L, NAKATA K. Modeling underwater oil/gas jets and plumes[J]. Journal of Hydraulic Engineering, 1999, 125(5):481-491.
[6] ZHENG L, YAPA P D. Simulation of oil spills from underwater accidents II:Model verification[J]. Journal of Hydraulic Research, 1998, 36(1):117-134.
[7] REED M, JOHANSEN Ø, BRANDVIK P J, et al. Oil spill modeling towards the close of the 20th century:overview of the state of the art[J]. Spill Science & Technology Bulletin, 1999, 5(1):3-16.
[8] ASCE Task Committee on Modeling of Oil Spills. State-of-the-art review of modeling transport and fate of oil spills[J]. Journal of Hydraulic Engineering, 1996, 122(11):594-609.
[9] ZHANG Y L, BAPTISTA A M. SELFE:A semi-implicit EulerianLagrangian finite-element model for cross-scale ocean circulation[J]. Ocean Modelling, 2008, 21(3-4):71-96.
[10] HU D C, ZHANG H W, ZHONG D Y. Properties of the EulerianLagrangian method using linear interpolators in a threedimensional shallow water model using z-level coordinates[J]. International Journal of Computational Fluid Dynamics, 2009, 23(3):271-284.
[11] OMAR M Y, SHEHADA M F, MEHANNA A K, et al. A case study of the Suez Gulf:Modelling of the oil spill behavior in the marine environment[J]. Egyptian Journal of Aquatic Research, 2021, 47(4):345-356.
[12] 毕研军, 刘心田, 宋协法, 等. 基于GNOME的溢油污染渔业资源损失评估[J]. 渔业科学进展, 2020, 41(3):1-10. BI Y J, LIU X T, SONG X F, et al. Oil spill pollution and fishery resource loss assessment based on GNOME[J]. Progress in Fishery Sciences, 2020, 41(3):1-10.
[13] KOROTENKO K A, MAMEDOV R M, KONTAR A E, et al. Particle tracking method in the approach for prediction of oil slick transport in the sea:modelling oil pollution resulting from river input[J]. Journal of Marine Systems, 2004, 48(1-4):159-170.
[14] BERRY A, DABROWSKI T, LYONS K. The oil spill model OILTRANS and its application to the Celtic Sea[J]. Marine Pollution Bulletin, 2012, 64(11):2489-2501.
[15] LI Y Q, CHEN H B, LV X Q. Impact of error in ocean dynamical background, on the transport of underwater spilled oil[J]. Ocean Modelling, 2018, 132:30-45.
[16] CAO R C, CHEN H B, RONG Z R, et al. Impact of ocean waves on transport of underwater spilled oil in the Bohai Sea[J]. Marine Pollution Bulletin, 2021, 171:112702.
[17] TOZ A C. Modelling oil spill around Bay of Samsun, Turkey, with the use of OILMAP and ADIOS software systems[J]. Polish Maritime Research, 2017, 24(3):115-125.
[18] DURAN R, ROMEO L, WHITING J, et al. Simulation of the 2003 foss barge-point wells oil spill:A comparison between BLOSOM and GNOME oil spill models[J]. Journal of Marine Science and Engineering, 2018, 6(3):104.
[19] TOZ A C, BUBER M. Performance evaluation of oil spill software systems in early fate and trajectory of oil spill:comparison analysis of OILMAP and PISCES 2 in Mersin bay spill[J]. Environmental Monitoring and Assessment, 2018, 190(9):551.
[20] BARRETO F T C, DAMMANN D O, TESSAROLO L F, et al. Comparison of the Coupled Model for Oil spill Prediction (CMOP) and the Oil Spill Contingency and Response model (OSCAR) during the DeepSpill field experiment[J]. Ocean & Coastal Management, 2021, 204:105552.
[21] BALOGUN A L, YEKEEN S T, PRADHAN B, et al. Oil spill trajectory modelling and environmental vulnerability mapping using GNOME model and GIS[J]. Environmental Pollution, 2021, 268:115812.
[22] LIU D R, LI Y, MU L. Parameterization modeling for wind drift factor in oil spill drift trajectory simulation based on machine learning[J]. Frontiers in Marine Science, 2023, 10:1222347.
[23] DE DOMINICIS M, BRUCIAFERRI D, GERIN R, et al. A multimodel assessment of the impact of currents, waves and wind in modelling surface drifters and oil spill[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2016, 133:21-38.
[24] BEEGLE-KRAUSE C J. GNOME:NOAA's next-generation spill trajectory model[C]//Oceans' 99. MTS/IEEE. Riding the Crest into the 21st Century. Conference and Exhibition. Conference Proceedings (IEEE Cat. No. 99CH37008). Seattle:IEEE, 1999:1262-1266.
[25] YANG Y, CHEN Z L, LI Y, et al. Numerical simulation of oil spill in the Gulf of Mexico based on the GNOME and ADIOS[J]. Applied Mechanics and Materials, 2013, 295-298:1535- 1542.
[26] ZELENKE B, O'CONNOR C, BARKER C H, et al. General NOAA operational modeling environment (GNOME) technical documentation[R]. Seattle:Emergency Response Division, 2012.
[27] YANG Y Q, LI Y, LIU G M, et al. A hindcast of the Bohai Bay oil spill during June to August 2011[J]. Acta Oceanologica Sinica, 2017, 36(11):21-26.
[28] COPPINI G, DE DOMINICIS M, ZODIATIS G, et al. Hindcast of oil-spill pollution during the Lebanon crisis in the Eastern Mediterranean, July-August 2006[J]. Marine Pollution Bulletin, 2011, 62(1):140-153.
[29] YANG Y Q, LI Y, LI J, et al. The influence of Stokes drift on oil spills:Sanchi oil spill case[J]. Acta Oceanologica Sinica, 2021, 40(10):30-37.
[30] LI Y, YU H, WANG Z Y, et al. The forecasting and analysis of oil spill drift trajectory during the Sanchi collision accident, East China Sea[J]. Ocean Engineering, 2019, 187:106231.
[31] SHI S Q, WANG Y Q, LIU Y H. Analyzing and assessment of oil viscosity models based on the API ranges[J]. Petroleum Science and Technology, 2017, 35(23):2208-2215.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号 电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn
本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626