首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
葵花8号AHI晴空水汽辐射率资料同化对北上台风“巴威”的降水预报影响研究
作者:董琪如1  刘丽丽1  潘晓2  邱晓滨1  李得勤2  杨旭3 
单位:1. 天津市海洋气象重点实验室天津市气象科学研究所, 天津 300074;
2. 中国气象局沈阳大气环境研究所, 辽宁 沈阳 110166;
3. 天津市环境气象中心, 天津 300074
关键词:AHI晴空水汽辐射率 北上台风 葵花8号静止气象卫星 降水预报 台风“巴威” 
分类号:P457.8
出版年·卷·期(页码):2025·42·第三期(76-91)
摘要:
为提升北上台风强降水的精细化预报水平,针对2020年8月的北上台风“巴威”,利用3 km分辨率的天气预报模式(WRF)及其三维变分同化(3D-Var)系统,研究静止气象卫星葵花8号成像仪(AHI)的3条水汽通道晴空辐射率资料不同同化频次对此次北上台风降水预报的影响,并分析了1 h循环同化试验改善强降水的动力和热力原因。研究结果表明:循环同化AHI晴空水汽辐射率资料对台风中心最低气压及中心最大风速的前12 h预报均有改进作用;同化频次增加至1 h,台风中心最大风速预报改进明显。经技巧评分、公平技巧评分、真实技巧评分及命中率多种客观统计检验指标证实,同化AHI晴空水汽辐射率资料的试验对预报时效和降水阈值均有较好的预报技巧,且1 h循环同化试验对前24 h强降水预报优势最显著。循环同化AHI晴空水汽辐射率资料能改善对流层中上层的暖湿条件,1 h循环同化较3 h循环同化增强了低空急流及上升运动,进而提升了模式强降水预报能力。
To improve the heavy precipitation forecasts of northward-moving typhoons, taking Typhoon“Bavi”in August 2020 as an example, this work studies the influence of assimilation frequency of the clear-sky AHI water vapor radiance, collected by three water vapor channels on the Himawari-8 geostationary meteorological satellite, on the precipitation forecasts of Typhoon "Bavi" based on the Weather Research Forecast(WRF) model with a horizontal resolution of 3 km and Three-Dimensional Variational assimilation system(3D-Var). The dynamical and thermodynamical mechanisms for the improved heavy precipitation forecasts in the hourly-cycle assimilation experiment are discussed. The results show that the cycle assimilation of the clear-sky AHI water vapor radiance improves the 12-hour forecasts of typhoon center minimum pressure and maximum wind speeds.The typhoon center maximum wind speed forecasts improve substantially when the assimilation frequency increases to 1 hour. A multiple of objective statistical scores including TS, ETS, TSS, and POD confirm that assimilating AHI clear-sky water vapor radiance produces better forecasting skills for both lead time and rainfall threshold. The hourly-cycle assimilation experiment has the best ability for 0~24 hours heavy precipitation forecasts. Cycling AHI clear-sky water vapor radiance assimilation greatly modifies the warm and humid conditions in the middle and upper troposphere. Compared to three hourly cycle assimilation experiment, the hourly cycle assimilation experiment further enhances the low-level jet and updraft, thus improving the forecasts of heavy precipitation.
参考文献:
[1] 刘学刚,李庆宝,张金艳,等.近年来引发青岛暴雨的台风特征分析[J].气象, 2011, 37(9):1091-1099.LIU X G, LI Q B, ZHANG J Y, et al. The analysis on characteristics of recent typhoons causing heavy rainfall in Qingdao[J]. Meteorological Monthly, 2011, 37(9):1091-1099.
[2] 孙密娜,杨洋,姜皓严.影响黄渤海区域两次北上台风的对比分析[J].海洋预报, 2018, 35(5):74-84.SUN M N, YANG Y, JIANG H Y. Comparative analysis of two northward typhoons affecting the Bohai and Yellow sea areas[J].Marine Forecasts, 2018, 35(5):74-84.
[3] 陈淑琴,李英,范悦敏,等.台风"山竹"(2018)远距离暴雨的成因分析[J].大气科学, 2021, 45(3):573-587.CHEN S Q, LI Y, FAN Y M, et al. Analysis of long-distance heavy rainfall caused by Typhoon Mangosteen (2018)[J]. Chinese Journal of Atmospheric Sciences, 2021, 45(3):573-587.
[4] 李欣,张璐.北上台风强降水形成机制及微物理特征[J].应用气象学报, 2022, 33(1):29-42.LI X, ZHANG L. Formation mechanism and microphysics characteristics of heavy rainfall caused by northward-moving typhoons[J]. Journal of Applied Meteorological Science, 2022, 33(1):29-42.
[5] BROWNING K A. The dry intrusion perspective of extra-tropical cyclone development[J]. Meteorological Applications, 1997, 4(4):317-324.
[6] 程正泉,陈联寿,徐祥德,等.近10年中国台风暴雨研究进展[J].气象, 2005, 31(12):3-9.CHENG Z Q, CHEN L S, XU X D, et al. Research progress on typhoon heavy rainfall in China for last ten years[J].Meteorological Monthly, 2005, 31(12):3-9.
[7] 陈宏,杨晓君,易笑园,等.北上台风"安比"后期两个阶段暴雨落区分布的差异性分析[J].高原气象, 2021, 40(5):1087-1100.CHEN H, YANG X J, YI X Y, et al. Analysis of difference in distribution of rainstorms in the later two stages of NorthwardMoving Typhoon Ampil[J]. Plateau Meteorology, 2021, 40(5):1087-1100.
[8] 杨晓亮,杨敏,隆璘雪,等.影响环渤海地区的北上台风特征及其各类典型大暴雨过程分析[J].海洋预报, 2021, 38(4):100-106.YANG X L, YANG M, LONG L X, et al. The characteristics of northward-moving typhoons affecting the Bohai rim region and the analysis of various types of related heavy rainfall processes[J].Marine Forecasts, 2021, 38(4):100-106.
[9] YANG J, ZHANG Z Q, WEI C Y, et al. Introducing the new generation of Chinese geostationary weather satellites, FengYun-4[J]. Bulletin of the American Meteorological Society, 2017, 98(8):1637-1658.
[10] BESSHO K, DATE K, HAYASHI M, et al. An introduction to Himawari-8/9-Japan's new-generation geostationary meteorological satellite[J]. Journal of the Meteorological Society of Japan.Ser.Ⅱ, 2016, 94(2):151-183.
[11] SCHMIT T J, GUNSHOR M M, MENZEL W P, et al. Introducing the next-generation advanced baseline imager on GOES-R[J].Bulletin of the American Meteorological Society, 2005, 86(8):1079-1096.
[12] XU D M, LIU Z Q, FAN S Y, et al. Assimilating All-sky infrared radiances from Himawari-8 using the 3DVar method for the prediction of a severe storm over North China[J]. Advances in Atmospheric Sciences, 2021, 38(4):661-676.
[13] 耿晓雯,闵锦忠,杨春,等. FY-4A AGRI辐射率资料偏差特征分析及订正试验[J].大气科学, 2020, 44(4):679-694.GENG X W, MIN J Z, YANG C, et al. Analysis of FY-4A AGRI radiance data bias characteristics and a correction experiment[J].Chinese Journal of Atmospheric Sciences, 2020, 44(4):679-694.
[14] YANG C, LIU Z Q, GAO F, et al. Impact of assimilating GOES imager clear-sky radiance with a rapid refresh assimilation system for convection-permitting forecast over Mexico[J]. Journal of Geophysical Research:Atmospheres, 2017, 122(10):5472-5490.
[15] HONDA T, MIYOSHI T, LIEN G Y, et al. Assimilating all-sky Himawari-8 satellite infrared radiances:a case of typhoon soudelor (2015)[J]. Monthly Weather Review, 2018, 146(1):213-229.
[16] 窦芳丽,陆其峰,郭杨.全天候卫星微波观测资料变分同化研究进展[J].地球科学进展, 2019, 34(11):1120-1130.DOU F L, LU Q F, GUO Y. Overview of researches on all-sky satellite microwave data variational assimilation[J]. Advances in Earth Science, 2019, 34(11):1120-1130.
[17] 廖捷,周自江.全球常规气象观测资料质量控制研究进展与展望[J].气象科技进展, 2018, 8(1):56-63.LIAO J, ZHOU Z J. Quality control of the global conventional meteorological observations:progresses and prospects[J].Advances in Meteorological Science and Technology, 2018, 8(1):56-63.
[18] 朱文刚,李刚,张华,等.高光谱大气红外探测器AIRS资料云检测及晴空通道应用技术初步研究[J].气象, 2013, 39(5):633-644.ZHU W G, LI G, ZHANG H, et al. Study on application technique of cloud detection and clear channels hyperspectral atmospheric infrared detector airs data[J]. Meteorological Monthly, 2013, 39(5):633-644.
[19] BAUER P, OHRING G, KUMMEROW C, et al. Assimilating satellite observations of clouds and precipitation into NWP models[J]. Bulletin of the American Meteorological Society, 2011, 92(6):ES25-ES28.
[20] OTKIN J A. Assimilation of water vapor sensitive infrared brightness temperature observations during a high impact weather event[J]. Journal of Geophysical Research:Atmospheres, 2012,140(D19):D19203.
[21] 梁皓,许冬梅,束艾青,等.葵花8号辐射率资料同化在一次川渝暴雨预报中的应用研究[J].高原气象, 2023, 42(6):1478-1491.LIANG H, XU D M, SHU A Q, et al. The impact of assimilating himawari-8 radiance data on the prediction of a severe storm over Sichuan-Chongqing Region[J]. Plateau Meteorology, 2023, 42(6):1478-1491.
[22] Wang Y B, Liu Z Q, Yang S, et al. Added value of assimilating Himawari-8 AHI water vapor radiances on analyses and forecasts for "7.19" severe storm over North China[J]. Journal of Geophysical Research:Atmospheres, 2018, 123(7):3374-3394.
[23] 许冬梅,沈菲菲,李泓,等.新一代静止气象卫星葵花8号的晴空红外辐射率资料同化对台风"天鸽"的预报影响研究[J].海洋学报, 2022, 44(3):40-52.XU D M, SHEN F F, LI H, et al. The impact of assimilation of Himawari-8 clear-sky data from the new generation geostationary meteorological satellite on the forecast of super Typhoon Hato[J].Acta Oceanologica Sinica, 2022, 44(3):40-52.
[24] HEIDINGER A, BOTAMBEKO D, WALTHER A. A naïve Bayesian cloud mask delivered to NOAA enterprise[C]//NOAA NESDIS Center for Satellite Applications and Research Algorithm Theoretical Basis Document. Maryland:STAR JPSS Annual Science Team Meeting, 2016.
[25] 张涵斌,李玉焕,陈敏,等.集合变分混合同化方案在快速循环同化系统中的应用研究[J].大气科学, 2020, 44(6):1349-1363.ZHANG H B, LI Y H, CHEN M, et al. Implementation of hybrid En-3DVAR assimilation scheme in rapid cycling assimilation system[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(6):1349-1363.
[26] BARKER D M, HUANG W, GUO Y R, et al. A Threedimensional variational data assimilation system for MM5:implementation and initial results[J]. Monthly Weather Review,2004, 132(4):897-914.
[27] THODSAN T, WU F L, TORSRI K, et al. Satellite radiance data assimilation using the WRF-3DVAR system for tropical storm Dianmu (2021) forecasts[J]. Atmosphere, 2022, 13(6):956.
[28] 薛纪善.气象卫星资料同化的科学问题与前景[J].气象学报,2009, 67(6):903-911.XUE J S. Scientific issues and perspective of assimilation of meteorological satellite data[J]. Acta Meteorologica Sinica, 2009,67(6):903-911.
[29] 束艾青,许冬梅,李泓,等. FY-3D卫星MWHS-2辐射率资料直接同化对台风"米娜"预报的影响[J].热带海洋学报, 2022, 41(5):17-28.SHU A Q, XU D M, LI H, et al. Assimilating MWHS-2 radiance of FY-3D satellite and its influence on the forecast of Typhoon Mitag[J]. Journal of Tropical Oceanography, 2022, 41(5):17-28.
[30] 刘硕,王金丹,阎琦,等.热带气旋"巴威"北上引发辽宁省强降水的形成机制分析[J].暴雨灾害, 2023, 42(2):150-159.LIU S, WANG J D, YAN Q, et al. Analysis on the formation mechanism of heavy precipitation in Liaoning Province caused by northward-moving tropical cyclone"Bavi"[J]. Torrential Rain and Disasters, 2023, 42(2):150-159.
[31] YING M, ZHANG W, YU H, et al. An overview of the China Meteorological Administration tropical cyclone database[J].Journal of Atmospheric and Oceanic Technology, 2014, 31(2):287-301.
[32] LU X Q, YU H, YING M, et al. Western North Pacific tropical cyclone database created by the China Meteorological Administration[J]. Advances in Atmospheric Sciences, 2021, 38(4):690-699.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号 电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn
本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626