摘要:
|
利用环渤海沿岸及海上125个站点的观测数据,采用最优插值法对中国气象局陆面数据同化系统(CLDAS)10 m风实况分析数据进行融合订正。结果表明:订正后的CLDAS数据与观测数据的相关系数由0.89增大到0.99,平均绝对误差由1.02 m/s减小到0.27 m/s,均方根误差由1.63 m/s减小到0.36 m/s。在渤海湾、莱州湾、辽东湾、渤海中部、渤海海峡不同海区中,莱州湾的订正效果最好,平均绝对误差和均方根误差都减小了81.4%左右。不同风力等级的订正效果显示,3级以下风的平均绝对误差由0.5~1.0 m/s减小到0.3 m/s以下,4~8级风的平均绝对误差由1.4~4.7 m/s减小到1.0 m/s以下,9级及以上风的平均绝对误差由5.9 m/s减小到1.1 m/s,且不同等级风的预报准确率也得到明显提升。对2021年1月和12月两次大风过程进行检验,发现订正后的CLDAS数据的10 m风速明显增大,变化趋势和风速大值区与观测数据更加接近。 |
Using the observation data from 125 stations along the coast and offshore in the Bohai Sea, the optimal interpolation method is used to correct the China Meteorological Administration Land Data Assimilation System(CLDAS) 10-meter wind data. The results show that through correction, the correlation coefficient between the observation data and CLDAS data increases from 0.89 to 0.99, the mean absolute error decreases from 1.02 m/s to 0.27 m/s, and the root mean square error decreases from 1.63 m/s to 0.36 m/s. Among the different areas of the Bohai Bay, Laizhou Bay, Liaodong Bay, central Bohai Sea, and Bohai Strait, the best correction effect is achieved in the Laizhou Bay, with the mean absolute error and root mean square error reduced both by about 81.4%. The correction effect of different wind levels shows that the mean absolute error of winds below level 3 decreases from 0.5~1.0 m/s to below 0.3 m/s, that between levels 4 and 8 decreases from 1.4~4.7 m/s to below 1.0 m/s, and that above level 9 decreases from 5.9 m/s to 1.1 m/s. The validation of two strong wind processes in 2021 shows sthat the corrected CLDAS 10-meter wind speed increases significantly, the trend and wind speed maximum area are more closely aligned with the observed data. |
参考文献:
|
[1] 韩帅,师春香,姜志伟,等. CMA高分辨率陆面数据同化系统(HRCLDAS-V1.0)研发及进展[J]. 气象科技进展, 2018, 8(1):102-108.HAN S, SHI C X, JIANG Z W, et al. Development and progress of high resolution CMA land surface data assimilation system[J]. Advances in Meteorological Science and Technology, 2018, 8(1):102-108. [2] 师春香,潘旸,谷军霞,等.多源气象数据融合格点实况产品研制进展[J]. 气象学报, 2019, 77(4):774-783.SHI C X, PAN Y, GU J X, et al. A review of multi-source meteorological data fusion products[J]. Acta Meteorologica Sinica,2019, 77(4):774-783. [3] 孙帅,师春香,梁晓,等.不同陆面模式对我国地表温度模拟的适用性评估[J]. 应用气象学报, 2017, 28(6):737-749.SUN S, SHI C X, LIANG X, et al. Assessment of ground temperature simulation in China by different land surface models based on station observations[J]. Journal of Applied Meteorological Science, 2017, 28(6):737-749. [4] 龙柯吉,师春香,韩帅,等.中国区域高分辨率温度实况融合格点分析产品质量评估[J]. 高原山地气象研究, 2019, 39(3):67-74.LONG K J, SHI C X, HAN S, et al. Quality assessment of high resolution temperature merged grid analysis product in China[J]. Plateau and Mountain Meteorology Research, 2019, 39(3):67-74. [5] 刘莹,师春香,王海军,等. CLDAS气温数据在中国区域的适用性评估[J]. 大气科学学报, 2021, 44(4):540-548.LIU Y, SHI C X, WANG H J, et al. Applicability assessment of CLDAS temperature data in China[J]. Transactions of Atmospheric Sciences, 2021, 44(4):540-548. [6] 齐铎,刘松涛,张天华,等.基于格点的中国东北中北部2 m温度数值预报检验及偏差订正[J]. 干旱气象, 2020, 38(1):81-88.QI D, LIU S T, ZHANG T H, et al. Grid temperature numerical forecast verification and correction over central and north region of northeast China[J]. Journal of Arid Meteorology, 2020, 38(1):81-88. [7] 董春卿,郭媛媛,张磊,等.基于CLDAS的格点温度预报偏差订正[J]. 干旱气象, 2021, 39(5):847-856.DONG C Q, GUO Y Y, ZHANG L, et al. Deviation correction method of grid temperature prediction based on CLDAS data[J]. Journal of Arid Meteorology, 2021, 39(5):847-856. [8] 王丹,王建鹏,党超琪,等. CLDAS实况产品在陕西气温网格预报检验与订正中的应用[J]. 气象, 2023, 49(8):946-957.WANG D, WANG J P, DANG C Q, et al. Application of CLDAS in test and correction of grid temperature forecast in Shaanxi province[J]. Meteorological Monthly, 2023, 49(8):946-957. [9] 杨富燕,彭芳,于飞,等. CLDAS温湿产品在贵州的适用性评估及订正[J]. 高原气象, 2023, 42(2):472-482.YANG F Y, PENG F, YU F, et al. Evaluation of applicability and correction for the CLDAS temperature and relative humidity products in Guizhou province[J]. Plateau Meteorology, 2023, 42(2):472-482. [10] 董祝雷,赵艳丽,冯晓晶,等. CLDAS气温和降水产品在内蒙古地区适用性分析[J]. 干旱气象, 2023, 41(5):811-819.DONG Z L, ZHAO Y L, FENG X J, et al. Applicability assessment of CLDAS temperature and precipitation products in Inner Mongolia[J]. Journal of Arid Meteorology, 2023, 41(5):811-819. [11] 穆建华,纪晓玲,贾乐,等.基于CLDAS的贺兰山区5-9月降水时空分布特征及其与地形的关系分析[J]. 气象科技, 2023, 51(6):824-834.MU J H, JI X L, JIA L, et al. Analysis of temporal and spatial distribution characteristics of precipitation from May to September in Helan Mountains and its relationship with topography based on CLDAS data[J]. Meteorological Science and Technology, 2023, 51(6):824-834. [12] 朱科旭,管琴,白爱娟.青海省洪涝灾害时空分布和致灾雨量特征[J]. 沙漠与绿洲气象, 2024, 18(1):81-88.ZHU K X, GUAN Q, BAI A J. Characteristics of spatial and temporal distribution and disaster-causing rainfall of flood disasters in Qinghai province[J]. Desert and Oasis Meteorology,2024, 18(1):81-88. [13] 蒋雨荷,黄晓龙,李施颖,等.四川CLDAS 5 km小时能见度实况产品与能见度观测站资料质量对比评估[J]. 高原山地气象研究, 2020, 40(3):73-78.JIANG Y H, HUANG X L, LI S Y, et al. Comparison and evaluation of the data quality between CLDAS 5 km hourly visibility products and visibility observation stations in Sichuan province[J]. Plateau and Mountain Meteorology Research, 2020,40(3):73-78. [14] 龙柯吉,宋雯雯,黄晓龙.智能网格能见度实况融合格点分析产品在一次大雾天气过程中的评估[J]. 气象研究与应用, 2021, 42(4):50-55.LONG K J, SONG W W, HUANG X L. Evaluation of intelligent grid visibility live fusion grid analysis products in a dense fog weather[J]. Journal of Meteorological Research and Application,2021, 42(4):50-55. [15] 郭阳,师春香,徐宾,等. CLDAS陆面融合实况数据对天津雾和霾判识的准确性分析[J]. 干旱气象, 2023, 41(4):657-665.GUO Y, SHI C X, XU B, et al. Accuracy analysis of fog and haze identification based on CLDAS land surface fusion data in Tianjin[J]. Journal of Arid Meteorology, 2023, 41(4):657-665. [16] 庄妍,陈正洪,钟水新,等.基于CLDAS资料的恩施山区成雾潜势指标特征及成因简析[J]. 暴雨灾害, 2023, 42(4):479-487.ZHUANG Y, CHEN Z H, ZHONG S X, et al. Characteristics and simple analysis of fogging potential in the mountain area of Enshi based on CLDAS data[J]. Torrential Rain and Disasters, 2023, 42(4):479-487. [17] 李施颖,吴薇,黄晓龙.四川省CLDAS和ECMWF再分析数据风速产品评估[J]. 高原山地气象研究, 2020, 40(4):70-76.LI S Y, WU W, HUANG X L. Wind speed evaluation of CLDAS and ERA5-Land in Sichuan[J]. Plateau and Mountain Meteorology Research, 2020, 40(4):70-76. [18] 曾晓青,薛峰,姚莉,等.针对模式风场的格点预报订正方案对比[J]. 应用气象学报, 2019, 30(1):49-60.ZENG X Q, XUE F, YAO L, et al. Comparative study of different error correction methods on model output wind field[J]. Journal of Applied Meteorological Science, 2019, 30(1):49-60. [19] 俞剑蔚,李聪,蔡凝昊,等.国家级格点实况分析产品在江苏地区的适用性评估分析[J]. 气象, 2019, 45(9):1288-1298.YU J W, LI C, CAI N H, et al. Applicability evaluation of the national gridded real-time observation datasets in Jiangsu province[J]. Meteorological Monthly, 2019, 45(9):1288-1298. [20] 王丹,杨艳超,党超琪,等. CLDAS 10 m风产品在陕西的质量检验分析[J]. 陕西气象, 2022(1):17-21.WANG D, YANG Y C, DANG C Q, et al. Quality inspection analysis of CLDAS 10 m wind products in Shaanxi[J]. Journal of Shaanxi Meteorology, 2022(1):17-21. [21] 刘卫华,金巍,王会品,等. 2020年CLDAS风场数据在辽宁省的适用性分析[J]. 气象与环境学报, 2023, 39(6):61-68.LIU W H, JIN W, WANG H P, et al. Analysis of the applicability of CLDAS wind field data in Liaoning province in 2020[J]. Journal of Meteorology and Environment, 2023, 39(6):61-68. [22] 王亚男,李英华,孙密娜.下垫面对渤海西部雷雨大风影响的数值模拟分析[J]. 海洋预报, 2019, 36(3):24-32.WANG Y N, LI Y H, SUN M N. Numerical simulation study of the effect of underlying sea surface on thunderstorm wind in the western Bohai Sea[J]. Marine Forecasts, 2019, 36(3):24-32. [23] 刘志杰,刘彬贤,王锐,等.基于传统和深度学习技术的黄渤海域大风预报方法研究[J]. 海洋预报, 2022, 39(6):34-43.LIU Z J, LIU B X, WANG R, et al. Research on the gale prediction methods in the Yellow Sea and Bohai Sea based on traditional and deep learning technologies[J]. Marine Forecasts,2022, 39(6):34-43. [24] 孙晓磊,张唯,胡田田,等.弱冷空气引起渤海湾大风的时空分布特征及环境条件分析[J]. 海洋预报, 2022, 39(6):44-54.SUN X L, ZHANG W, HU T T, et al. Spatial and temporal distribution characteristics and environmental conditions of gales caused by weak cold air over the Bohai Bay[J]. Marine Forecasts,2022, 39(6):44-54. [25] 李建通,杨维生,郭林,等.提高最优插值法测量区域降水量精度的探讨[J]. 大气科学, 2000, 24(2):263-270.LI J T, YANG W S, GUO L, et al. A study of improving precision of measuring regional precipitation in optimum interpolation method[J]. Chinese Journal of Atmospheric Sciences, 2000, 24(2):263-270. [26] 韩焱红,郜静静,苗蕾,等.基于最优插值的雷达定量降水估测订正及应用--以广元市为例[J]. 高原山地气象研究, 2019, 39(3):82-85.HAN Y H, GAO J J, MIAO L, et al. Correction for radar-derived quantitation precipitation estimation based on the optimum interpolation and its application--taking Guangyuan as an example[J]. Plateau and Mountain Meteorology Research, 2019,39(3):82-85. [27] 潘旸,沈艳,宇婧婧,等.基于最优插值方法分析的中国区域地面观测与卫星反演逐时降水融合试验[J]. 气象学报, 2012, 70(6):1381-1389.PAN Y, SHEN Y, YU J J, et al. Analysis of the combined gaugesatellite hourly precipitation over China based on the OI technique[J]. Acta Meteorologica Sinica, 2012, 70(6):1381-1389. [28] 王福增,温凯,何山,等.多源降水量数据融合分析及评价[J]. 兰州大学学报(自然科学版), 2023, 59(5):647-654.WANG F Z, WEN K, HE S, et al. Analysis and evaluation of multi-source merging precipitation data[J]. Journal of Lanzhou University(Natural Sciences), 2023, 59(5):647-654. [29] 蔡志颖,郑艳,段晶晶,等.台风“烟花”影响浙江期间GPM卫星降水产品的评估及订正[J]. 暴雨灾害, 2023, 42(6):704-715.CAI Z Y, ZHENG Y, DUAN J J, et al. Evaluation and correction of GPM satellite precipitation products during typhoon“In-Fa”affecting Zhejiang[J]. Torrential Rain and Disasters, 2023, 42(6):704-715. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|