摘要:
|
利用1990—2014年的ICOADS观测资料,从空间分布、季节变化和不同风速风向特征等角度,对3种海面风场资料(ERA-I、CCMP、CFSR)在吕宋海峡处的风速和风向质量进行了较为全面详细的对比和评估。主要结论如下:(1)3种风场资料在吕宋海峡处风速整体偏小,海峡中部误差较小,南北两端误差较大;均方根误差季节变化显著,6月最小,12月最大;(2)风速误差随不同风速、不同风向而不同,整体呈现高风速时风速较观测偏大,低风速时风速偏小的特点,且低风速段误差较小,高风速段误差随风速增大而增大;(3)3种风场资料在吕宋海峡处风向整体偏右,海峡中部误差较小,南北两端误差较大;季节变化显著,12月最小,5月最大;(4)风向误差随不同风速、不同风向而不同,偏北方向,风向偏右;偏东方向,低风速段风向偏右,高风速段风向偏左;偏南方向,低风速段风向偏左,高风速段风向偏右;偏西方向,风向呈偏左状态。风向误差整体随风速的增大而减小;(5)综合比较,CCMP的风速、风向资料质量均好于其他两种资料。 |
Compared to ICOADS observed data, three sets of wind speed and direction data from ERA-I, CCMP and CFSR analysis data in Luzon Strait are evaluated. The conclusions are as follows:(1) The wind speed of analysis data is weaker than observed data overall the Luzon Strait with the small bias in the middle of the strait while large at the north and south parts, and RMSE varies seasonally, with the smallest in June and the largest in December. (2) The bias of wind speed varies with wind speed and direction. The wind speed bias is very small at low wind speed and large proportionally at high wind speed. (3) The wind direction of the three analysis data sets in Luzon Strait always turns right compared to observed data; the bias is small at the middle part of the strait and large at the north and south parts; the annual cycle of the bias is significant, with the smallest in December and the largest in May. (4) The wind direction bias varies with wind speed and direction. There is a clockwise deviation in the north wind direction, a clockwise deviation in the east wind direction with low speed and counterclockwise deviation with high speed, a clockwise deviation in the south wind direction with high speed and counterclockwise deviation with low speed, a counterclockwise deviation in the west wind direction. The wind direction bias decreases with the increase of wind speed. (5) Comparing comprehensively, CCMP data is better than others. The conclusions above can be helpful to choose appropriate sea surface wind data for atmospheric and oceanographic research in the Luzon Strait. |
参考文献:
|
[1] Cardone V J, Cox A T, Harris E L, et al. Impact of QuikSCAT surface marine winds on wave hindcasting[J]. Rosenstiel School of Marine and Atmospheric Science, 2005:1-24. [2] 邓波, 史剑, 蒋国荣, 等. 驱动大洋海浪模式的两种海面风场对比分析研究[J]. 海洋预报, 2014, 31(3):29-36. [3] Ebuchi N, Graber H C, Caruso M J. Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(12):2049-2062. [4] Li M, Liu J P, Wang Z Z, et al. Assessment of sea surface wind from NWP reanalyses and satellites in the Southern Ocean[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(8):1842-1853. [5] 旷芳芳, 张友权, 张俊鹏, 等. 3种海面风场资料在台湾海峡的比较和评估[J]. 海洋学报, 2015, 37(5):44-53. [6] 王东良, 姚小海, 孟雷, 等. 海洋二号卫星散射计风场产品真实性检验及分析[J]. 海洋预报, 2014, 31(4):47-53. [7] 仇月萍, 许大志, 陆希. HY-2A散射计风场在南海海域的检验和分析[J]. 海洋预报, 2018, 35(4):25-33. [8] 张凯峰, 项杰, 杨波, 等. 基于ERA-interim再分析资料的ASCAT风场产品在南海的精度评估及南海月平均风场特征分析[J]. 海洋预报, 2017, 34(2):27-36. [9] 郑崇伟. 基于CCMP风场的近22年中国海海表风场特征分析[J]. 气象与减灾研究, 2011, 34(3):41-46. [10] 冯双磊, 王伟胜, 刘纯, 等. NCEP/NCAR再分析数据在风能资源评估中的应用研究[J]. 资源科学, 2009, 31(7):1233-1237. [11] 刘宇昕, 张毅, 王兆徽, 等. 基于ASCAT微波散射计风场与NCEP再分析风场的全球海洋表面混合风场[J]. 海洋预报, 2014, 31(3):10-18. [12] Atlas R, Hoffman R N, Bloom S C, et al. A multiyear global surface wind velocity dataset using SSM/I wind observations[J]. Bulletin of the American Meteorological Society, 1996, 77(5):869-882. [13] Saha S, Moorthi S, Pan H L, et al. The NCEP climate forecast system reanalysis[J]. Bulletin of the American Meteorological Society, 2010, 91(8):1015-1057. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|