摘要:
|
采用美国国家环境预报中心高空间分辨率再分析海温资料和中国国家海洋环境预报中心提供的逐小时全球高时间分辨率海温数据,通过WRF模式对2018年10号台风"安比"(1810)进行数值模拟,结合台风动力和热力条件分析结果表明:海温分布与位涡强度具有良好的一致性;海温通过影响台风内部垂直运动带来的潜热释放决定对台风强度的改变,高分辨率的海温数据对台风数值模拟有一定影响。 |
Based on the sea surface temperature (SST) reanalysis data with high spatial resolution of the National Centers for Environmental Prediction and the hourly SST data with global coverage of the National Marine Environmental Forecasting Center, the Weather Research and Forecasting model is used to simulate typhoon "Ampil" (1810) in this paper. Taking the analysis results of typhoon dynamic and thermal conditions into consideration, it is found that the SST distribution is in good agreement with the intensity of the potential vorticity, and SST determines the variation of typhoon intensity by affecting the latent heat release caused by the vertical movement within the typhoon. Therefore, high-resolution SST data has a certain impact on the numerical simulation of typhoon. |
参考文献:
|
[1] Xie S P. Satellite observations of cool ocean-atmosphere interaction[J]. Bulletin of the American Meteorological Society, 2004, 85(2):195-208. [2] 金祖辉, 陈隽. 西太平洋暖池区海表水温暖异常对东亚夏季风影响的研究[J]. 大气科学, 2002, 26(1):57-68. Jin Z H, Chen J. A composite study of the influence of SST warm anomalies over the Western Pacific warm pool on Asian summer monsoon[J]. Chinese Journal of Atmospheric Science, 2002, 26(1):57-68. [3] 孙淑清, 马淑杰. 海温异常对东亚夏季风及长江流域降水影响的分析及数值试验[J]. 大气科学, 2003, 27(1):36-52. Sun S Q, Ma S J. Analysis and numerical experiment on the relationship between the 1998 summer monsoon activities and SSTA in tropical regions[J]. Chinese Journal of Atmospheric Science, 2003, 27(1):36-52. [4] Bongirwar V, Rakesh V, Kishtawal C M, et al. Impact of satellite observed microwave SST on the simulation of tropical cyclones[J]. Natural hazards, 2011, 58(3):929-944. [5] 中华人民共和国水利部. 中国水旱灾害公报-2018[M]. 北京:中国水利水电出版社, 2019. Ministry of Water Resources of the People's Republic of China. Zhongguo shuihan zaihai gongbao 2018[M]. Beijing:China Water & Power Press, 2019. [6] Emanuel K A. An air-sea interaction theory for tropical cyclones. Part I:steady-state maintenance[J]. Journal of the Atmospheric Sciences, 1986, 43(6):585-605. [7] Kasahara A. A numerical experiment on the development of a tropical cyclone[J]. Journal of the Atmospheric Sciences, 1961, 18(3):259-282. [8] Chan J C L. The physics of tropical cyclone motion[J]. Annual Review of Fluid Mechanics, 2005, 37:99-128. [9] 江敦春. 台风中位涡收支的诊断研究[J]. 海洋学报, 1988, 10(6):764-771. Jiang D C. Diagnosis of the potential vorticity budget of typhoon[J]. Acta Oceanologica Sinica, 1988, 10(6):764-771. [10] 黄亿, 寿绍文, 傅灵艳. 对一次台风暴雨的位涡与湿位涡诊断分析[J]. 气象, 2009, 35(1):65-73. Huang Y, Shou S W, Fu L Y. A diagnostic analysis of PV and MPV on the heavy rain caused by typhoon Khanun[J]. Meteorological Monthly, 2009, 35(1):65-73. [11] Molinari J, Skubis S, Vollaro D, et al. Potential vorticity analysis of tropical cyclone intensification[J]. Journal of the Atmospheric Sciences, 1998, 55(16):2632-2644. [12] Wu C C, Huang T S, Huang W P, et al. A new look at the binary interaction:potential vorticity diagnosis of the unusual southward movement of Tropical Storm Bopha (2000) and its interaction with Supertyphoon Saomai (2000)[J]. Monthly Weather Review, 2003, 131(7):1289-1300. [13] Wu C C, Huang T S, Chou K H. Potential vorticity diagnosis of the key factors affecting the motion of Typhoon Sinlaku (2002)[J]. Monthly Weather Review, 2004, 132(8):2084-2093. [14] Wu C C, Chen S G, Chen J H, et al. Interaction of Typhoon Shanshan (2006) with the midlatitude trough from both adjointderived sensitivity steering vector and potential vorticity perspectives[J]. Monthly Weather Review, 2009, 137(3):852-862. [15] Wu C C, Chen S G, Yang C C, et al. Potential vorticity diagnosis of the factors affecting the track of Typhoon Sinlaku (2008) and the impact from dropwindsonde data during T-PARC[J]. Monthly Weather Review, 2012, 140(8):2670-2688. [16] Li X, Ling T J, Zhang Y F, et al. A 31-year global diurnal sea surface temperature dataset created by an ocean mixed-layer model[J]. Advances in Atmospheric Sciences, 2018, 35(12):1443- 1454. [17] Ling T J, Xu M, Liang X Z, et al. A multilevel ocean mixed layer model resolving the diurnal cycle:development and validation[J]. Journal of Advances in Modeling Earth Systems, 2015, 7(4):1680-1692. [18] Ying M, Zhang W, Yu H, et al. An overview of the China meteorological administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2):287-301. [19] Lu X Q, Yu H, Ying M, et al. Western North Pacific tropical cyclone database created by the China meteorological administration[J]. Advances in Atmospheric Sciences, 38(4):690- 699. [20] Skamarock W C, Klemp J B, Dudhia J, et al. A description of the advanced research WRF model version 4[J]. National Center for Atmospheric Research:Boulder, CO, USA, 2019:145. [21] Hong S Y, Dudhia J, Chen S H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J]. Monthly Weather Review, 2004, 132(1):103- 120. [22] Hong S Y, Noh Y, Dudhia J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134(9):2318-2341. [23] Kain J S. The Kain-Fritsch convective parameterization:an update[J]. Journal of Applied Meteorology and Climatology, 2004, 43(1):170-181. [24] Zhang R W, Huangfu J L, Hu T. Dynamic mechanism for the evolution and rapid intensification of Typhoon Hato (2017)[J]. Atmospheric Science Letters, 2019, 20(8):e930. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|