基于梯度依赖OI的全球多参数Argo数据集的构建与验证 |
作者:王丹阳1 张春玲1 2 卢少磊3 4 李兆钦3 4 刘增宏3 4 |
单位:1. 上海海洋大学 海洋科学学院, 上海 201306; 2. 自然资源部海洋生态监测与修复技术重点实验室, 上海 201306; 3. 自然资源部第二海洋研究所, 浙江 杭州 310012; 4. 卫星海洋环境动力学国家重点实验室, 浙江 杭州 310012 |
关键词:梯度依赖最优插值 Argo 多参数 网格化数据集 客观分析 |
分类号:P715.2 |
|
出版年·卷·期(页码):2023·40·第二期(77-88) |
摘要:
|
利用Argo资料,基于梯度依赖最优插值客观分析系统,重构2004—2020年空间分辨率为1°×1°的全球多参数Argo网格化数据集,并通过置信区间估计、实测数据检验、与其他数据集对比等方式,对该数据集进行一系列的验证。结果表明:重构的Argo数据集在95%的统计概率下,90%以上的温度、盐度重构结果可信,且与实测数据的温度、盐度最大偏差不超过±1.0℃、±0.02。该数据集所反映的大尺度信号与现有数据集一致,并且可以保留较多中小尺度信号,分析结果与实际观测更接近。 |
Based on the gradient-dependent optimal interpolation objective analysis system, only, a global multiparameter Argo gridded dataset with a spatial resolution of 1°×1° from 2004 to 2020 is constructed using the Argo observation in this paper. A series of validations are made for this dataset including confidence interval estimation, observation inspection and comparison with other datasets. The results show that more than 90% of the reconstructed temperature and salinity are reliable under the statistical probability of 95% with the maximum bias from observations are less than ±1.0℃ and ±0.02, respectively. The large-scale signals reflected in this dataset are consistent with the existing datasets, and more small and medium-scale signals can be retained. The analysis results are closer to the observations. |
参考文献:
|
[1] ROEMMICH D, JOHNSON G C, RISER S, et al. The Argo program: observing the global ocean with profiling floats[J]. Oceanography, 2009, 22(2): 34-43. [2] Argo Science Team. On the design and implementation of Argo: an initial plan for a global array of profiling floats. International CLIVAR Project Office Report Number 2. GODAE report No. 5[R]. Melbourne: GODAE International Project Office, 1998: 32. [3] GOOD S A, MARTIN M J, RAYNER N A. EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates[J]. Journal of Geophysical Research, 2013, 118(12): 6704-6716. [4] HOSODA S, OHIRA T, NAKAMURA T. A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations[J]. JAMSTEC Report of Research and Development, 2008, 8: 47-59. [5] ROEMMICH D, GILSON J. The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo program[J]. Progress in Oceanography, 2009, 82(2): 81-100. [6] 卢少磊, 刘增宏, 李宏, 等. 全球海洋Argo网格资料集(BOAArgo)用户手册[Z]. 2021: 23. LU S L, LIU Z H, LI H, et al. User manual of global ocean Argo gridded dataset (BOA_Argo)[Z]. 2021: 23. [7] 吴晓芬, 许建平, 李宏, 等. 西太平洋海域Argo衍生数据产品(集)用户手册[Z]. 2017: 18. WU X F, XU J P, LI H, et al. User manual of derived products from Argo dataset of the western Pacific Ocean[Z]. 2017: 18. [8] 杨小欣, 许建平, 吴晓芬, 等. 热带太平洋海域Argo衍生数据产品(热盐含量)用户手册[Z]. 2017: 21. YANG X X, XU J P, WU X F, et al. User manual of Argo derived dataset (heat and salt content) of the tropical Pacific Ocean[Z]. 2017: 21. [9] 梅山. 西太平洋海域Argo资料同化再分析数据集用户手册[Z]. 2017. MEI S. User manual of Argo data assimilation reanalysis dataset of the western Pacific Ocean[Z]. 2017. [10] CHENG L J, TRENBERTH K E, GRUBER N, et al. Improved estimates of changes in upper ocean salinity and the hydrological cycle[J]. Journal of Climate, 2020, 33(23): 10357-10381. [11] Cheng L J, TRENBERTH K E, FASULLO J, et al. Improved estimates of ocean heat content from 1960 to 2015[J]. Science Advances, 2017, 3(3): e1601545. [12] HOLLINGSWORTH A, LÖNNBERG P. The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: the wind field[J]. Tellus A, 1986, 38A(2): 111-136. [13] MEYERS G, PHILLIPS H, SMITH N, et al. Space and time scales for optimal interpolation of temperature — Tropical Pacific Ocean[J]. Progress in Oceanography, 1991, 28(3): 189-218. [14] BONEKAMP H, VAN OLDENBORGH G J, BURGERS G. Variational Assimilation of Tropical Atmosphere-Ocean and expendable bathythermograph data in the Hamburg Ocean Primitive Equation ocean general circulation model, adjusting the surface fluxes in the tropical ocean[J]. Journal of Geophysical Research, 2001, 106(C8): 16693-16709. [15] ZHANG C L, XU J P, BAO X W, et al. An effective method for improving the accuracy of Argo objective analysis[J]. Acta Oceanologica Sinica, 2013, 32(7): 66-77. [16] 张春玲, 许建平, 鲍献文. 基于Argo资料的梯度依赖相关尺度方法[J]. 解放军理工大学学报(自然科学版), 2015, 16(5): 476-483. ZHANG C L, XU J P, BAO X W. Gradient-dependent correlation scale method based on Argo[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2015, 16(5): 476-483. [17] ZHANG C L, WANG Z F, LIU Y. An Argo-based experiment providing near-real-time subsurface oceanic environmental information for fishery data[J]. Fisheries Oceanography, 2021, 30(1): 85-98. [18] LI Z Q, LIU Z H, LU S L. Global Argo data fast receiving and post-quality-control system. IOP Conference Series: Earth and Environmental Science, 2020, 502: 012012. [19] LIU Z H, LI Z Q, LU S L, et al. Scattered dataset of global ocean temperature and salinity profiles from the international Argo program[J]. Journal of Global Change Data & Discovery, 2021, 5(4): 312-321. [20] AKIMA H. A new method of interpolation and smooth curve fitting based on local procedures[J]. Journal of the ACM, 1970, 17(4): 589-602. [21] ZHANG C L, ZHANG M L, WANG Z F, et al. Thermocline model for estimating Argo sea surface temperature[J]. Sustainable Marine Structures, 2022, 4(1): 1-12. [22] DERBER J, ROSATI A. A global oceanic data assimilation system [J]. Journal of Physical Oceanography, 1989, 19(9): 1333-1347. [23] CHU P C, TSENG H C, CHANG C P, et al. South China Sea warm pool detected in spring from the Navy's Master Oceanographic Observational Data Set (MOODS) [J]. Journal of Geophysical Research, 1997, 102(C7): 15761-15771. [24] 张福昌. 产品验收中的数理统计方法[M]. 北京: 中国对外经济贸易出版社, 1987. ZHANG F C. Mathematical statistical methods in product acceptance[M]. Beijing: China Foreign Economic Relations and Trade Press, 1987. [25] 梁冯珍. 应用概率统计[M]. 天津: 天津大学出版社, 2004. LIANG F Z. Applied probability and statistics[M]. Tianjin: Tianjin University Press, 2004. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|