台风浪集合预报方法研究 |
作者:刘安琪1 李铖2 郭文云3 葛建忠1 |
单位:1. 华东师范大学 河口海岸学国家重点实验室, 上海 200241; 2. 上海市海洋监测预报中心, 上海 200062; 3. 上海海事大学 海洋科学与工程学院, 上海 201306 |
关键词:台风浪 集合预报 波浪数值模式 有限体积海洋数值模式 |
分类号:P731.33 |
|
出版年·卷·期(页码):2023·40·第四期(22-33) |
摘要:
|
提出一种新型的集合预报方法,考虑台风实时预报信息及历史路径信息,基于动态权重生成台风预报路径集合,形成集合预报风场,并结合波浪数值模式(SWAN)和有限体积海洋数值模式(FVCOM),对台风期间波浪的有效波高进行模拟实验;在后报验证的基础上,使用集合预报数值实验给出结果的概率分布。结果表明:在集合预报的部分时间段内,集合预报结果对实测结果的覆盖率最高达到94%。此方法适用于台风影响下近岸波浪要素的预测,可为近岸海域的波浪预报工作提供新的预报技术和思路。 |
In this paper, we propose a new ensemble forecasting method for typhoon waves. By considering realtime typhoon forecasts and historical typhoon track information, this method generates ensemble typhoon track and wind field forecasts, and eventually predicts the significant wave height by using the outputs from Simulating Waves Nearshore (SWAN) and Finite-Volume Community Ocean Model (FVCOM) models. This method is verified through conducting ensemble hindcast experiments, and probability distribution of the predicted significant wave height is derived. The results show that the coverage of the forecasts to observation reaches up to 94% in part of forecast duration. This method is applicable to the near-shore wave element prediction in severe weather systems such as typhoon, and can provide new techniques and ideas for wave forecasting in near-shore waters. |
参考文献:
|
[1] ANTHES R A. Tropical cyclones: their evolution, structure and effects[M]. Boston: American Meteorological Society, 1982. [2] HERTERICH J G, DIAS F. Extreme long waves over a varying bathymetry[J]. Journal of Fluid Mechanics, 2019, 878: 481-501. [3] CHAWLA A, SPINDLER D M, TOLMAN H L. Validation of a thirty year wave hindcast using the climate forecast system reanalysis winds[J]. Ocean Modelling, 2013, 70: 189-206. [4] ALVES J H G M, WITTMANN P, SESTAK M, et al. The NCEPFNMOC combined wave ensemble product: expanding benefits of interagency probabilistic forecasts to the oceanic environment[J]. Bulletin of the American Meteorological Society, 2013, 94(12): 1893-1905. [5] FAN Y M, PAN S Q, CHEN J M, et al. Ensemble wave forecasting over typhoon period[C]//Proceedings of the 2013 MTS/IEEE OCEANS-Bergen. Bergen: IEEE, 2013. [6] PAN S Q, FAN Y M, CHEN J M, et al. Optimization of multimodel ensemble forecasting of typhoon waves[J]. Water Science and Engineering, 2016, 9(1): 52-57. [7] ZIEGER S, GREENSLADE D, KEPERT J D. Wave ensemble forecast system for tropical cyclones in the Australian region[J]. Ocean Dynamics, 2018, 68(4): 603-625. [8] TOTH Z, KALNAY E. Ensemble forecasting at NMC: The generation of perturbations[J]. Bulletin of the American Meteorological Society, 1993, 74(12): 2317-2330. [9] GOERSS J S. Tropical cyclone track forecasts using an ensemble of dynamical models[J]. Monthly Weather Review, 2000, 128(4): 1187-1193. [10] 郭文云, 安佰超, 裘诚, 等. 基于多源数据的台风风暴潮概率预报研究: 台风集合的构建[J]. 海洋预报, 2021, 38(1): 26-33. GUO W Y, AN B C, QIU C, et al. Probabilistic forecast for typhoon storm surge based on multi-source data: creation of typhoon ensemble[J]. Marine Forecasts, 2021, 38(1): 26-33. [11] YASUDA T, MASE H, MORI N, et al. Stochastic typhoon model and its application to future typhoon projection[J]. Coastal Engineering No.OAI, 2010.DOI:109753/icce.v32. management.16. [12] 任剑波. 台风驱动的长江口波浪动力场及其泥沙输运影响研究[D]. 上海: 华东师范大学, 2020. REN J B. Wave dynamics and its impact on sediment transport under typhoons in the Changjiang estuary[D]. Shanghai: East China Normal University, 2020. [13] 丁平兴, 葛建忠. 长江口横沙浅滩及邻近海域灾害性天气分析[J]. 华东师范大学学报(自然科学版), 2013(4): 72-78. DING P X, GE J Z. Analysis of disastrous weather in the Hengsha Shoal and adjacent waters of the Yangtze Estuary[J]. Journal of East China Normal University (Natural Science Edition), 2013(4): 72-78. [14] GE J Z, YI J X, ZHANG J T, et al. Impact of vegetation on lateral exchanges in a salt marsh-tidal creek system[J]. Journal of Geophysical Research: Earth Surface, 2021, 126(8): e2020JF- 005856. [15] ZHOU F C, GE J Z, LIU D Y, et al. The lagrangian-based floating macroalgal growth and drift model (FMGDM v1.0): application to the Yellow Sea green tide[J]. Geoscientific Model Development, 2021, 14(10): 6049-6070. [16] REN F M, QIU W Y, DING C C, et al. An objective track similarity index and its preliminary application to predicting precipitation of Landfalling tropical cyclones[J]. Weather and Forecasting, 2018, 33(6): 1725-1742. [17] YING M, ZHANG W, YU H, et al. An overview of the China meteorological administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 287-301,. [18] LU X Q, YU H, YING M, et al. Western North Pacific tropical cyclone database created by the China Meteorological Administration[J]. Advances in Atmospheric Sciences, 2021, 38(4): 690-699. [19] FUJITA T T. Pressure distribution within typhoon[J]. Geophysical Magazine, 1952, 23: 437-451. [20] 赵长进. 长江口及其邻近海区无结构网格风暴潮模式的建立与应用[D]. 上海: 华东师范大学, 2014. ZHAO C J. Development and analysis of the unstructured numerical model for storm surge in the Changjiang estuary[D]. Shanghai: East China Normal University, 2014. [21] 任剑波, 何青, 沈健, 等. 远区台风“三巴”对长江口波浪动力场的作用机制[J]. 海洋科学, 2020, 44(5): 12-23. REN J B, HE Q, SHEN J, et al. The effect mechanism of a remote typhoon "Sanba" on wave dynamics in the Changjiang estuary[J]. Marine Sciences, 2020, 44(5): 12-23. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|