首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
3种不同卫星遥感海温产品在南海台风过程中的差异对比
作者:张培军1 2  周水华1 2  梁昌霞1 2  邢会斌1 2 
单位:1. 自然资源部南海预报减灾中心, 广东 广州 510310;
2. 自然资源部海洋环境探测技术与应用重点实验室, 广东 广州 510310
关键词:海表温度 卫星遥感 南海 浮标观测 台风 
分类号:P731.11
出版年·卷·期(页码):2024·41·第四期(11-20)
摘要:
针对3种不同卫星遥感海温产品(CRW SST、OSTIA SST和RSS SST)在不同台风影响期间对南海海域海表温度的表征能力进行了对比和评估。研究表明:3种卫星遥感产品均能捕捉到台风影响时海域海表温度的时空变化特征,CRW SST和 OSTIA SST 产品反映的南海海域海表温度时空特征变化的差异较小(均方根误差为0.22,相关系数为0.97),而RSS SST产品在台风过境后的局部海域显示出更大幅度的降温;CRW SST、OSTIA SST和 RSS SST产品与浮标观测数据的均方根误差分别为 1.27 ℃、1.32 ℃和 1.00 ℃。结果表明,与其他两种卫星遥感海表温度产品相比,RSS SST产品更能反映台风过境期间南海海域海表温度的变化特征。
Three sets of satellite-derived SST products (CRW SST, OSTIA SST and RSS SST) are compared and evaluated during typhoon processes in the South China Sea. The results show that all three products can capture the spatial-temporal variation of SST in typhoon-affected sea area. The difference between the CRW and OSTIA products is small (root mean square error is 0.22 ℃, correlation coefficient is 0.97), and the local SST in the RSS product decreases significantly after typhoon process. The root mean square errors of the CRW, OSTIA and RSS products with respect to buoy data are 1.27 ℃, 1.32 ℃ and 1.00 ℃, respectively. In summary, the RSS product performs best on SST variance during typhoon processes in the South China Sea.
参考文献:
[1] CHU P C, FAN C W, LIU W T. Determination of vertical thermal structure from sea surface temperature[J]. Journal of Atmospheric and Oceanic Technology, 2000, 17(7): 971-979.
[2] FOX D N, TEAGUE W J, BARRON C N, et al. The modular ocean data assimilation system (MODAS)[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(2): 240-252.
[3] GUINEHUT S, LE TRAON P Y, LARNICOL G, et al. Combining Argo and remote-sensing data to estimate the ocean threedimensional temperature fields-a first approach based on simulated observations[J]. Journal of Marine Systems, 2004, 46(1-4): 85-98.
[4] 王喜冬, 韩桂军, 李威, 等. 利用卫星观测海面信息反演三维温度场[J]. 热带海洋学报, 2011, 30(6): 10-17. WANG X D, HAN G J, LI W, et al. Reconstruction of ocean temperature profile using satellite observations[J]. Journal of Tropical Oceanography, 2011, 30(6): 10-17.
[5] WU X B, YAN X H, JO Y H, et al. Estimation of subsurface temperature anomaly in the North Atlantic using a self-organizing map neural network[J]. Journal of Atmospheric and Oceanic Technology, 2012, 29(11): 1675-1688.
[6] LIU L, PENG S Q, HUANG R X. Reconstruction of ocean's interior from observed sea surface information[J]. Journal of Geophysical Research: Oceans, 2017, 122(2): 1042-1056.
[7] 韩玉康, 余丹丹, 申晓莹, 等. HYCOM模式SST的预报误差订正[J]. 海洋预报, 2018, 35(3): 76-80. HAN Y K, YU D D, SHEN X Y, et al. Study on the correction of SST prediction of HYCOM[J]. Marine Forecasts, 2018, 35(3): 76- 80.
[8] 张培军, 周水华, 梁昌霞. 基于卫星遥感海温数据的南海SST预报误差订正[J]. 热带海洋学报, 2020, 39(6): 57-65. ZHANG P J, ZHOU S H, LIANG C X. Study on the correction of SST prediction in South China Sea using remotely sensed SST[J]. Journal of Tropical Oceanography, 2020, 39(6): 57-65.
[9] LIU G, HERON S, EAKIN C, et al. Reef-scale thermal stress monitoring of coral ecosystems: new 5-km global products from NOAA coral reef watch[J]. Remote Sensing, 2014, 6(11): 11579- 11606.
[10] 孙旋, 蔡玉林, 索琳琳, 等. 基于SST的珊瑚礁白化监测技术综述[J]. 国土资源遥感, 2018, 30(2): 21-28. SUN X, CAI Y L, SUO L L, et al. Review of coral reef bleaching monitoring technology based on SST[J]. Remote Sensing for Land & Resources, 2018, 30(2): 21-28.
[11] 杨晓霞, 唐丹玲. 台风引起南海海表面降温的位置变化特征[J]. 热带海洋学报, 2010, 29(4): 26-31. YANG X X, TANG D L. Location of sea surface temperature cooling induced by typhoon in the South China Sea[J]. Journal of Tropical Oceanography, 2010, 29(4): 26-31.
[12] 杨元建, 冼桃, 孙亮, 等. 连续台风对海表温度和海表高度的影响[J]. 海洋学报, 2012, 34(1): 71-78. YANG Y J, XIAN T, SUN L, et al. Impacts of sequential typhoons on sea surface temperature and sea surface height in September 2008[J]. Acta Oceanologica Sinica, 2012, 34(1): 71- 78.
[13] GENTEMANN C L, WENTZ F J, MEARS C A, et al. In situ validation of tropical rainfall measuring mission microwave sea surface temperatures[J]. Journal of Geophysical Research: Oceans, 2004, 109(C4): C04021.
[14] KACHI M, NAOKI K, HORI M, et al. AMSR2 validation results [C]//2013 IEEE International Geoscience and Remote Sensing Symposium. Melbourne, VIC, Australia: IEEE, 2013: 831-834.
[15] 孙凤琴, 张彩云, 商少平, 等. 西北太平洋部分海域AVHRR、 TMI与MODIS遥感海表层温度的初步验证[J]. 厦门大学学报(自然科学版), 2007, 46(S1): 1-5. SUN F Q, ZHANG C Y, SHANG S P, et al. Primary validation of AVHRR/MODIS/TMI SST for part of the Northwest Pacific[J]. Journal of Xiamen University (Natural Science), 2007, 46(S1): 1- 5.
[16] 李明, 张占海, 刘骥平, 等. 利用南极走航观测评估卫星遥感海表面温度[J]. 海洋学报, 2008, 30(3): 16-27. LI M, ZHANG Z H, LIU J P, et al. Evaluation of satellite-based sea surface temperature using in situ measurements from Chinese Antarctic Expeditions[J]. Acta Oceanologica Sinica, 2008, 30(3): 16-27.
[17] 蒋兴伟, 奚萌, 宋清涛. 六种遥感海表温度产品的比对分析[J]. 海洋学报, 2013, 35(4): 88-97. JIANG X W, XI M, SONG Q T. A comparison analysis of six sea surface temperature products[J]. Acta Oceanologica Sinica, 2013, 35(4): 88-97.
[18] 赵洪臣, 刘永学, 周兴华, 等. 基于志愿观测船舶和浮标数据的SST日产品质量评价研究[J]. 海洋科学进展, 2016, 34(4): 462-473. ZHAO H C, LIU Y X, ZHOU X H, et al. Quality evaluation of SST daily products based on VOS and buoy measurements[J]. Advances in Marine Science, 2016, 34(4): 462-473.
[19] 王晨琦, 李响, 张蕴斐, 等. 3套不同的SST再分析数据与中国近海浮标观测的对比研究[J]. 海洋学报, 2020, 42(3): 118-128. WANG C Q, LI X, ZHANG Y F, et al. A comparative study of three SST reanalysis products and buoys data over the China offshore area[J]. Haiyang Xuebao, 2020, 42(3): 118-128.
[20] WADA A. Numerical simulations of sea surface cooling by a mixed layer model during the passage of typhoon Rex[J]. Journal of Oceanography, 2005, 61(1): 41-57.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号 电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn
本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626