首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
台风“利奇马”对长江口水通量影响的数值模拟研究
作者:姚鼎1  李铖2  张凤林1  葛建忠3  张洪生1  郭文云1 
单位:1. 上海海事大学海洋科学与工程学院, 上海 201300;
2. 上海市海洋监测预报中心, 上海 200062;
3. 华东师范大学河口海岸学国家重点实验室, 上海 200062
关键词:FVCOM 台风影响 水通量 分流比 长江口 
分类号:P444
出版年·卷·期(页码):2024·41·第四期(66-76)
摘要:
在台风等极端天气影响下,河口水通量可能会在短时间内发生强烈变化。利用无结构有限体积海岸海洋模型FVCOM,研究了1909号台风“利奇马”对长江口水通量及分流比的影响。结果表明:台风“利奇马”可造成南槽持续30 h的净向陆水通量;受台风影响,北支、北港、北槽和南槽4个入海口台风的入海净水通量都呈现相似的减小—增大—减小—恢复的变化规律,总净入海通量也呈现类似规律,且变化幅度可超过60%;台风总体上增大了北侧支汊的净分流比,减小了南侧支汊的净分流比。
Under the influence of extreme weather, such as typhoons, the estuarine water flux may change strongly in a short time. In this study, the effects of Typhoon 1909 "Lekima" on the water flux and split ratio in the Changjiang Estuary are investigated using the FVCOM model. The results show that Typhoon "Lekima" can cause the net landward water flux of the South Passage for more than 30 hours. Au the net water fluxes in the four inlets, i. e. North Branch, North Channel, North Passage and South Passage, show similar decrease-increasedecrease -recovery evolutions under the influence of the typhoon. The total net seaward water flux shows a similar evolution with its magnitude varying by more than 60%. The typhoon generally leads to the increase of net split ratio in the northern branch and the decrease of net split ratio in the southern branch.
参考文献:
[1] ZHANG H, CHEN D K, ZHOU L, et al. Upper ocean response to typhoon Kalmaegi (2014) [J]. Journal of Geophysical Research: Oceans, 2016, 121(8): 6520-6535.
[2] 郭文云, 安佰超, 裘诚, 等. 基于多源数据的台风风暴潮概率预报研究: 数值预报系统[J]. 海洋预报, 2021, 38(2): 1-11. GUO W Y, AN B C, QIU C, et al. Probabilistic forecast for typhoon storm surge based on multi-source data: numerical forecast system[J]. Marine Forecasts, 2021, 38(2): 1-11.
[3] 贾宁, 刘强, 石先武, 等. 基于现场调查的台风"天鸽”(1713)和台风“山竹”(1822)风暴潮灾害影响和致灾对比分析[J]. 海洋预报, 2022, 39(5): 94-99. JIA N, LIU Q, SHI X W, et al. Comparative analysis of the impact of typhoon storm surge disaster and the disaster-causing difference between typhoon "Hato" (1713) and "Mangkhut" (1822) based on field survey[J]. Marine Forecasts, 2022, 39(5): 94-99.
[4] HUANG Y G, YANG H F, WANG Y P, et al. Swell-driven sediment resuspension in the Yangtze Estuary during tropical cyclone events[J]. Estuarine, Coastal and Shelf Science, 2022, 267: 107765.
[5] LI L J, WANG C N, PAREJA-ROMAN L F, et al. Effects of typhoon on saltwater intrusion in a high discharge estuary[J]. Journal of Geophysical Research: Oceans, 2022, 127(8): e2021JC018206.
[6] WANG J, DAI Z J, MEI X F, et al. Tropical cyclones significantly alleviate mega-deltaic erosion induced by high riverine flow[J]. Geophysical Research Letters, 2020, 47(19): e2020GL089065.
[7] 潘明婕, 孔俊, 杨芳, 等. 台风路径对磨刀门水道咸潮上溯动力过程的影响机制[J]. 热带海洋学报, 2019, 38(3): 53-67. PAN M J, KONG J, YANG F, et al. The particular influence caused by typhoon path on salt intrusion in the Modaomen Waterway, China[J]. Journal of Tropical Oceanography, 2019, 38(3): 53-67.
[8] REN J B, XU F, HE Q, et al. The role of a remote tropical cyclone in sediment resuspension over the subaqueous delta front in the Changjiang Estuary, China[J]. Geomorphology, 2020, 377: 107564.
[9] 王浩斌, 杨世伦, 杨海飞. 台风对长江口表层悬沙浓度的影响[J]. 华东师范大学学报(自然科学版), 2019(2): 195-208. WANG H B, YANG S L, YANG H F. A study of the surficial suspended sediment concentration in response to typhoons in the Yangtze Estuary[J]. Journal of East China Normal University (Natural Science), 2019(2): 195-208.
[10] KUANG C P, CHEN K, WANG J, et al. Responses of hydrodynamics and saline water intrusion to typhoon Fongwong in the north Branch of the Yangtze river estuary[J]. Applied Sciences, 2021, 11(19): 8986.
[11] ZHANG W, FENG H C, HOITINK A J F, et al. Tidal impacts on the subtidal flow division at the main bifurcation in the Yangtze River Delta[J]. Estuarine, Coastal and Shelf Science, 2017, 196: 301-314.
[12] 张蔚, 傅雨洁, 过津侃, 等. 潮波运动对长江口分流的影响[J]. 水科学进展, 2018, 29(4): 551-556. ZHANG W, FU Y J, GUO J K, et al. Influence of tidal motion on discharge distribution in Yangtze Estuary[J]. Advances in Water Science, 2018, 29(4): 551-556.
[13] 徐圣. 台风“兰恩”期间长江口南槽沉积动力过程[D]. 上海: 华东师范大学, 2020. XU S. Sediment dynamical processes in the South Passage of the Yangtze Estuary during the typhoon Lan[D]. Shanghai: East China Normal University, 2020.
[14] 张赛赛. 长江口潮差的时空变化及其环境意义[D]. 上海: 华东师范大学, 2019. ZHANG S S. Temporal and spatial variation of tidal range in the Changjiang Estuary and its environmental significance[D]. Shanghai: East China Normal University, 2019.
[15] 丁平兴, 葛建忠. 长江口横沙浅滩及邻近海域灾害性天气分析[J]. 华东师范大学学报(自然科学版), 2013(4): 72-78. DING P X, GE J Z. Analysis of disastrous weather in the Hengsha Shoal and adjacent waters of the Yangtze Estuary[J]. Journal of East China Normal University (Natural Science), 2013(4): 72-78.
[16] 任剑波, 何青, 沈健, 等. 远区台风“三巴”对长江口波浪动力场的作用机制[J]. 海洋科学, 2020, 44(5): 12-23. REN J B, HE Q, SHEN J, et al. The effect mechanism of a remote typhoon "Sanba" on wave dynamics in the Changjiang Estuary[J]. Marine Sciences, 2020, 44(5): 12-23.
[17] 王丽娟, 邓方俊, 史珩瑜, 等. 1909号台风“利奇马”影响期间浙江大风分布特征及成因分析[J]. 海洋预报, 2020, 37(6): 83-95. WANG L J, DENG F J, SHI H Y, et al. Distribution characteristics and causes of gale winds in Zhejiang province affected by typhoon "Lekima" (1909)[J]. Marine Forecasts, 2020, 37(6): 83-95.
[18] 章震宇, 马骉. 上海市防御台风“利奇马”工作评估[J]. 中国防汛抗旱, 2019, 29(11): 14-15. ZHANG Z Y, MA B. Assessment of typhoon Lekima No.201909 in Shanghai[J]. China Flood & Drought Management, 2019, 29(11): 14-15.
[19] 赵宁. 我国海洋灾害防御能力进一步提升[N]. 中国自然资源报, 2020-05-06(05). ZHAO N. China's marine disaster defense capabilities to further enhance[N]. China Natural Resources News, 2020-05-06(05).
[20] 李健, 侯一筠, 刘清容, 等. 台风“利奇马”对渤海风暴潮影响研究[J]. 海洋预报, 2021, 38(1): 35-43. LI J, HOU Y J, LIU Q R, et al. Research on the impact of typhoon "Lekima" on storm surges in the Bohai Sea[J]. Marine Forecasts, 2021, 38(1): 35-43.
[21] GE J Z, YI J X, ZHANG J T, et al. Impact of vegetation on lateral exchanges in a salt marsh-tidal creek system[J]. Journal of Geophysical Research: Earth Surface, 2021, 126(8): e2020JF- 005856.
[22] 窦润青, 郭文云, 葛建忠, 等. 长江口北槽落潮分流比变化原因分析[J]. 华东师范大学学报(自然科学版), 2014(3): 93-104. DOU R Q, GUO W Y, GE J Z, et al. Analysis for variation of the ebb flow diversion ratios in the North Passage of the Yangtze River Estuary[J]. Journal of East China Normal University (Natural Science), 2014(3): 93-104.
[23] 葛建忠, 郭文云, 丁平兴. 长江口横沙浅滩挖入式港池对流场的影响分析Ⅰ: 数值模型和验证[J]. 华东师范大学学报(自然科学版), 2013(4): 79-90. GE J Z, GUO W Y, DING P X. Hydrodynamic influence of proposed excavated-in harbor in the Hengsha Shoal of the Yangtze Estuary I: numerical model and validations[J]. Journal of East China Normal University (Natural Science), 2013(4): 79-90.
[24] 栾华龙, 柯科腾, 葛建忠, 等. 长江口规划工程影响下的咸潮入侵数值模拟[J]. 海洋科学进展, 2018, 36(4): 525-539. LUAN H L, KE K T, GE J Z, et al. 3D Numerical simulation of the impacts of planned estuarine projects on saltwater intrusion in the Yangtze Estuary[J]. Advances in Marine Science, 2018, 36(4): 525-539.
[25] 陶英佳, 葛建忠, 丁平兴. 长江口咸潮入侵预报系统的设计与应用[J]. 华东师范大学学报(自然科学版), 2016(2): 128-143. TAO Y J, GE J Z, DING P X. Design and application of saltwater intrusion forecasting system in the Changjiang estuary[J]. Journal of East China Normal University (Natural Science), 2016(2): 128- 143.
[26] 郭文云, 安佰超, 裘诚, 等. 基于多源数据的台风风暴潮概率预报研究: 台风集合的构建[J]. 海洋预报, 2021, 38(1): 26-33. GUO W Y, AN B C, QIU C, et al. Probabilistic forecast for typhoon storm surge based on multi-source data: Creation of typhoon ensemble[J]. Marine Forecasts, 2021, 38(1): 26-33.
[27] 唐川敏. 流域重大工程和气候变化对长江河口净分流比和盐通量的影响研究[D]. 上海: 华东师范大学, 2019. TANG C M. The influence of the major projects and climate change on water diversion ratio and salt fluxes in the Changjiang River Estuary[D]. Shanghai: East China Normal University, 2019.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号 电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn
本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626